1、苏科版八年级(上)数学期中复习教学案(3)等腰三角形的轴对称性 一、知识点:1 等腰三角形的性质:等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;等腰三角形的两个底角相等;(简称“等边对等角”)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(简称“三线合一”)2 等腰三角形的判定:如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”)直角三角形斜边上的中线等于斜边上的一半。3等边三角形: 等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形。 等边三角形的性质:等边三角形是轴对称图形,并且有3条对称轴;等边三角形的每个角都等于600。等边三角形
2、的判定:3个角相等的三角形是等边三角形;有两个角等于600的三角形是等边三角形;有一个角等于600的等腰三角形是等边三角形。4三角形的分类: 斜三角形:三边都不相等的三角形。 三角形 只有两边相等的三角形。 等腰三角形 等边三角形二、举例:例1、如图,已知D、E两点在线段BC上,ABAC,ADAE,试说明BD=CE的理由? ABCEDAEDBCO例2:如图,已知:ABC中,ABAC,BD和CE分别是ABC和ACB的角平分线,且相交于O点。试说明OBC是等腰三角形;连接OA,试判断直线OA与线段BC的关系?并说明理由。 ODCBA1234例3:如图,已知:AD和BC相交于O,1=2,3=4。试判
3、断AD和BC的关系,并说明理由。 EDCBA例4:如图,已知:ABC中,C=900,D、E是AB边上的两点,且AD=AC,BD=BC。求DCE的度数。 GFEDCBA例5:如图,已知:ABC中,BD、CE分别是AC、AB边上的高,G、F分别是BC、DE的中点。试探索FG与DE的关系。 AFEDBCM例6:如图,已知:ABC中,C=900,AC=BC,M是AB的中点,DEBC于E,DFAC于F。试判断MEF的形状?并说明理由。 EDCBA例7:如图,已知:ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,试说明CE=DE。 例8:如图,在等边ABC中,P为ABC内任意一
4、点,PDBC于D,PEAC于E,PFAB于F,AMBC于M,试猜想AM、PD、PE、PF之间的关系,并证明你的猜想AFCEBDMP 三、作业: CADHBEF1、如图,在ABC中,ACB90,高CD和角平分线AE交于点F,EHAB于点H,那么CFEH吗?说明理由。2、如图,ABE和ACE都是等边三角形,BD与CE相交于点O。(1)ECBD吗?为什么?若BD与CE交于点O,你能求出BOC的度数是多少吗?(2)如果要ABE和ACD全等,则还需要什么条件?在此条件下,整个图形是轴对称图形吗?此时BOC的度数是多少?EABCDO3、如图,已知:ABC是等边三角形,且ADBECF,那么DEF是等边三角形吗?ADFCEB