1、 摘 要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转
2、速外环调节电机的电枢电流以平衡负载电流。并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。关键词:双闭环;晶闸管;转速调节器;电流调节器;SimulinkAbstract: The design uses thyristors, diodes and other devices designs a speed, current double-loop SCR DC converter system. The system sets up the current detecting aspect, the current regulator ACR and the
3、 speed detecting link, speed regulator ASR, composes the current central and the speed central, the former through the feedback of the current components to level off the current, the latter through the feedback of speed detecting device to maintain the speed stably and finally eliminates the deviat
4、ion of speed bias.,thus allowing the system to the purpose of regulating the current and speed. when the system starts, the speed outer ring saturats non-functional, the current inner ring plays a major role to regulate the starting current to maintain the maximum so that the speed linear change, to
5、 reach a given value; when it operates steadily, the speed negative feedback from the outer ring plays a major role ,to let the speed changes with the given speed voltage , at the same time the current inner ring regulates the armature current of motor adjustment to balance the load current. Simulin
6、k for system through mathematical modeling and system simulation. Finally display control system model and the results of anti-truth. Keywords: Double-loop, thyristors, the speed regulator, the current regulator,Simulink1 绪论1.1论文的选题背景和研究意义电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,等行业。这些行业中绝大部分生产机械都采用电动机做原动机
7、。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。20世纪90年代前地大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场互相独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的启动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其他电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺候控制首选。因为它具有良好的线性特征,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。本次设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到
8、性能指标要求的电力拖动系统的调节器。并应用MATLAB软件对设计的系统进行仿真和校正以达到满足控制指标的目的。1.2 国内外研究现状近30年来,电力拖动系统得到了迅速的发展。但技术革新是永无止尽的,为了进一步提高电动机自动控制系统的性能,有关研究工作正围绕以下几个方面展开:1.2.1 采用新型电力电子器件电力电子器件的不断进步,为电机控制系统的完善提供了物质保证,新的电力电子器件正向高压,大功率,高频化和智能化方向发展。智能功率模块的广泛应用,使得新型电动机自动控制系统的体积更小,可靠性更高。传统直流电动机的整流装置采用晶闸管,虽然在经济性和可靠性上都有一定优势,但其控制复杂,对散热要求也较高
9、。电力电子器件的发展,使称为第二代电力电子器件之一的大功率晶体管得到了越来越广泛的应用。由于晶体管是既能控制导通又能控制关断的全控型器件,其性能优良,以大功率晶体管为基础组成的晶体管脉宽调制(PWM)直流调速系统在直流传动中使用呈现越来越普遍的趋势。1.2.2 应用现代控制理论在过去,人们感到自动控制理论的研究发展很快,但是在采用方面却不尽人意。但近年来,现代控制理论在电动机控制系统的应用研究方面却出现了蓬勃发展的兴旺景象,这主要归功于两个方面原因:第一是高性能处理器的应用,使得复杂的匀速得以实时完成。第二是在辨识,参数估值以及控制算法性能方面的理论和方法的成熟,使得应用现代控制理论能够取得更
10、好的控制效果。1.2.3 采用总线技术现代电动机自动控制系统在硬件结构上有朝总线化发展的趋势,总线化使得各种电动机的控制系统有可能采用相同的硬件结构。1.3 论文的主要研究内容1.3.1 建立能够的数学模型分析双闭环调速系统的工作原理,列写双闭环调速系统各环节的传递函数,并画出其动态结构图。1.3.2 经典控制部分首先了解双闭环直流调速系统的基本原理,然后应用工程设计方法,分别进行主电路、电流环和转速换的设计,并应用MATLAB语言中的SIMULINK工具箱对系统进行仿真。1.3.3 仿真部分运用SIMULINK工具箱对系统进行仿真,获得系统的动态响应曲线及其频率特性曲线。结合曲线对设计出的调
11、速系统的性能进行分析。2.直流电机拖动实验方案的选择与总体设计2.1 直流电机拖动实验方案的选择2.1.1单闭环直流调速系统单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。在电动机轴上装一台测速发电机SF ,引出与转速成正比的电压Uf 与给定电压Ud 比较后,得偏差电压U ,经放大器FD ,产生触发装置CF 的控制电压Uk ,用以控制电动机的转速,如图2.1所示。放大器整流触发装置负载电压电动机 速度检测图2.1 方案一原理框图2.1.2双闭环直流调速系统该方案主要由给定环节、ASR、ACR、触发器和整流装置环节、速度检测环节以及电流检测环节组成。为了使转速负反馈和电流负反馈分别起
12、作用,系统设置了电流调节器ACR和转速调节器ASR。电流调节器ACR和电流检测反馈回路构成了电流环;转速调节器ASR和转速检测反馈回路构成转速环,称为双闭环调速系统。因转速环包围电流环,故称电流环为内环,转速环为外环。在电路中,ASR和ACR串联,即把ASR的输出当做ACR的输入,再由ACR得输出去控制晶闸管整流器的触发器。为了获得良好的静、动态性能,转速和电流两个调节器一般都采用具有输入输出限幅功能的PI调节器,且转速和电流都采用负反馈闭环。该方案的原理框图如图2.2所示。电流检测整流触发装置ASRACR负载电压电动机速度检测 图2.2 方案二原理框图2.1.3方案选择方案一采用单闭环的速度
13、反馈调节时整流电路的脉波数m = 2 ,3 ,6 ,12 , ,其数目总是有限的,比直流电机每对极下换向片的数目要少得多。因此,除非主电路电感L = ,否则晶闸管电动机系统的电流脉动总会带来各种影响,主要有:(1) 脉动电流产生脉动转矩,对生产机械不利; (2)脉动电流(斜波电流) 流入电源,对电网不利,同时也增加电机的发热。并且晶闸管整流电路的输出电压中除了直流分量外,还含有交流分量。把交流分量引到运算放大器输入端,不仅不起正常的调节作用,反而会产生干扰,严重时会造成放大器局部饱和,从而破坏系统的正常工作。方案二采用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生
14、产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,不让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。为了获得近似理想的过度过程,并克服几个信号综合于一个调节器输入端的缺点,最好的方法就是将被调量转速与辅助被调量电流分开加以控制,用两个调节器分别调节转速和电流,构成转速、电流双闭环调速系统。所以本文选择方案二作为设计的最终方案。2.2直流电机拖动实验方案的总体设计图2.3 主电路图电路3.双闭环直流调速系统3.
15、1双闭环直流调速系统的组成及其静特性3.1.1双闭环交直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。两者之间实行嵌套连接,如图2.4所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。图2.4 转速、电流双闭环直流调速系统其中:ASR-转速调节器 ACR-电流调节器 TG-测速发电机 TA-电流互感器 UPE-电力电子变换器 -转速给定电压 Un-转速反馈电压 -
16、电流给定电压 -电流反馈电压3.1.2双闭环直流调速系统的静特性图2.5 双闭环直流调速系统的稳态结构框图分析静特性的关键是掌握PI调节器的稳态特征,一般使存在两种状况:饱和输出达到限幅值,不饱和输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和,换句话说,饱和的 调节器暂时隔断了输入和输出的联系,相当于使该调节环开环。当调节器不饱和时,PI的作用使输入偏差电压U在稳态时总为零。3.2双闭环直流调速系统的动态设计和校验3.2.1电流调节器的设计和校验1)确定时间常数已知,所以电流环小时间常数=0.0017+0.002=0.0037S。2
17、) 选择电流调节器的结构因为电流超调量,并保证稳态电流无静差,可按典型系统设计电流调节器电流环控制对象是双惯性型的,故可用PI型电流调节器。3) 电流调节器参数计算: 电流调节器超前时间常数=0.0133s,又因为设计要求电流超调量,查得有=0.5,所以=,所以ACR的比例系数 =。4) 校验近似条件电流环截止频率=135.1。晶闸管整流装置传递函数的近似条件:,满足条件。忽略反电动势变化对电流环动态影响条件: ,满足条件。电流环小时间常数近似处理条件:,满足条件。5) 计算调节器的电阻和电容取运算放大器的=40,有=1.07840=43.12,取45,取0.3,取0.2。故=,其结构图如下所
18、示: 图3.1 电流调节器3.2.2转速调节器的设计和校验1)确定时间常数:有则,已知转速环滤波时间常数=0.01s,故转速环小时间常数。2)选择转速调节器结构:按设计要求,选用PI调节器3)计算转速调节器参数:按跟随和抗干扰性能较好原则,取h=4,则ASR的超前时间常数为:,转速环开环增益 。ASR的比例系数为:。4)检验近似条件转速环截止频率为。电流环传递函数简化条件为,满足条件。转速环小时间常数近似处理条件为:,满足近似条件。5)计算调节器电阻和电容:取=40,则,取3700。,取0.02,取1。故。其结构图如下:图4-2 转速调节器6)校核转速超调量:由h=4,查得,不满足设计要求,应
19、使ASR 退饱和重计算。设理想空载z=0,h=4时,查得=77.5%,所以=2()()=,满足设计要求.4控制电路设计本控制系统采用转速、电流双闭环结构,其原理图如图4.4所示。图4.1双环调速系统原理图为了获得良好的静动态性能,转速和电流两个调节器一般都采用PI 调节器。ACR和ASR的输入、输出信号的极性,主要视触发电路对控制电压的要求而定。若触发器要求ACR的输出Uct为正极性,由于调节器一般为反向输入,则要求ACR的输入Ui*为负极性,所以,要求ASR输入的给定电压Un*为正极性。本文基于这种思想进行ASR和ACR设计。 图4.2 双闭环调速系统动态结构图基本数据直流电动机:264W、
20、220V、1.2A、1600r/min、Ra=5.2,La=6.6mH晶闸管装置放大系数:Ks=40电枢回路总电阻:R=9+1.2+0.2=10.4电流反馈系数:=0.05V/A(10V/1.5IN)转速反馈系数:=0.00625Vmin/v(10V/nN)设计要求静态指标:无静差动态指标:电流超调量i%5%,空载启动到而定转速时的转速超调量n%10%参数计算1.因为UN=230V,的整定范围在30150之间,由公式知当=30时UD取得最大值,由此计算得U2=113.50V。2.由有Ce=0.1290。3.由 有Tm=0.4825s。4.由有L=16.46mH。由有Tl=0.0091s。系统设
21、计1.电流环的设计(1)确定时间常数。整流装置滞后时间常数Ts,三相桥式整流电路的平均失控时间Ts=0.0017s。电流滤波时间常数Toi,三相桥式电路每个波头的时间是3.33ms,为了基本滤平波头,应有(12)Toi=3.33ms,因此取Toi=2ms=0.002s。电流环小时间常数Ti,按小时间常数近似处理,取Ti=Ts+ Toi=0.0037s。(2)确定电流环设计成何种典型系统。根据设计要求i%5%,而且Tl/Ti=0.0091/0.0037=2.46 ,所以满足近似条件。 2)校验忽略反电动势对电流环影响的近似条件是否满足:,现在,满足近似条件。按照上述参数,电流环满足动态设计指标要
22、求和近似条件。2.转速环的设计(1)确定时间常数。电流环等效时间常数为;转速滤波时间常数,根据所用测速发动机纹波情况,取=0.01s;转速环小时间常数按小时间常数近似处理,取。 (2)确定将转速环设计成何种典型系统。由于设计要求转速环无静差,转速调节器必须含有积分环节;又根据动态设计要求,应按典型型系统设计转速环。 (3)转速调节器的结构选择。转速调节器选用PI型,其传递函数为 (4)选择转速调节器参数。按跟随和抗干扰性能都能较好的原则取h=5,则ASR超前时间常数转速环开环增益为于是,ASR的比例系数为 (5)计算转速调节器的电路参数。转速调节器原理图如图4.4所示,按所用运算放大器,取R0
23、=40K,各电阻和电容值计算如下: 图4.4转速调节器原理图(6)校验近似条件。转速环截止频率1)校验电流环传递函数简化条件是否满足:现在,满足简化条件。2)校验小时间常数近似处理是否满足,现在,满足近似条件。3)校验转速超调量。当h=5时,而,因此,能满足设计要求。设计完成的控制系统如图4.5所示。 图4.11 设计完成的双闭环控制系统5系统调试5.1 系统的建模与参数设置转速、电流双闭环直流调速系统的主电路模型主要由交流电源、同步脉冲触发器、晶闸管直流桥、平波电抗器、直流电动机等部分组成。采用面向电气原理结构图方法构成的双闭环系统仿真模型如图6-1所示。 图5.1 转速、电流双闭环直流调速
24、系统的仿真模型转速、电流双闭环系统的控制电路包括:给定环节、ASR、ACR、限幅器、偏置电路、反相器、电流反馈环、速度反馈环等,因为在本次设计中单片机代替了控制电路绝大多数的器件,所以在此直接给出各部分的参数,各部分参数设置参考前几章各部分的参数。本系统选择的仿真算法为ode23tb,仿真Start time设为0,Stop time设为2.5。5.2 系统仿真结果的输出及结果分析当建模和参数设置完成后,即可开始进行仿真。图4-2是双闭环直流调速系统的电流和转速曲线。从仿真结果可以看出,它非常接近于理论分析的波形。下面分析一下仿真的结果。图5.2 双闭环直流调速系统的电流和转速曲线启动过程的第
25、一阶段是电流上升阶段,突加给定电压,ASR的输入很大,其输出很快达到限幅值,电流也很快上升,接近其最大值。第二阶段,ASR饱和,转速环相当于开环状态,系统表现为恒值电流给定作用下的电流调节系统,电流基本上保持不变,拖动系统恒加速,转速线形增长。第三阶段,当转速达到给定值后。转速调节器的给定与反馈电压平衡,输入偏差为零,但是由于积分作用,其输出还很大,所以出现超调。转速超调后,ASR输入端出现负偏差电压,使它退出饱和状态,进入线性调节阶段,使转速保持恒定,实际仿真结果基本上反映了这一点。由于在本系统中,单片机系统代替了控制电路的绝大多数控制器件,所以各项数据处理和调整都是在单片机内完成的,控制效
26、果要好于本次的仿真结果。 结论 双闭环直流调速系统突加给定电压由静止状态启动时,转速和电流的动态过程如仿真图5.2所示。由于在启动过程中转速调节器ASR经历了不饱和、饱和、退饱和三个阶段,即电流上升阶段、恒流升速阶段和转速调节阶段。从启动时间上看,第二阶段恒流升速是主要的阶段,因此双闭环系统基本上实现了电流受限制下的快速启动,利用了饱和非线性控制方法,达到“准时间最优控制”。带PI调节器的双闭环调速系统还有一个特点,就是转速必超调。在双闭环调速系统中,ASR的作用是对转速的抗扰调节并使之在稳态是无静差,其输出限幅决定允许的最大电流。ACR的作用是电流跟随,过流自动保护和及时抑制电压的波动。通过
27、仿真可知:启动时,让转速外环饱和不起作用,电流内环起主要作用,调节启动电流保持最大,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随电流外环调节电机的电枢电流以平衡负载电流。致谢这篇的毕业设计论文一直是在我的指导教师张斌老师的悉心指导下进行的。张斌老师治学态度严谨,学识渊博,为人和蔼可亲。并且在整个毕业设计过程中不断对我得到的结论进行总结,并提出新的问题,使得我的毕业设计课题能够深入地进行下去,也使我接触到了许多理论和实际上的新问题,使我做了许多有益的思考。在此表示诚挚的感谢和由衷的敬意。张斌老师在专业教学方面具有丰富的实践经
28、验,对我的实验工作给予了很多的指导和帮助,使我能够将理论中的结果与实际相结合。另外,他对待问题的严谨作风也给我留下了深刻的印象。在此表示深深的谢意。参考文献1王兆安电力电子技术第4版北京:机械工业出版社,2000 2张广溢,等.电机学M.重庆:重庆大学出版社,2002.3王军.自动控制原理M.重庆:重庆大学出版社,2008.4导向科技.Protel DXP电子电路设计培训教程M.北京:人民邮电大学出版社,2003.5周渊深.交直流调速系统与Matlab仿真M.北京:中国电力出版社,2004.6陈伯时.电力拖动自动控制系统(第2版)M.北京: 机械工业出版社. 20057陈伯时.电力拖动自动控制系统,第3版北京:机械工业出版社,20048石玉等电力电子技术题例与电路设计指导北京:机械工业出版社,19989 邵群涛主编.电机及拖动基础. 北京:机械工业出版社,199910王离九等电力拖动自动控制系统武汉:华中科技大学出版社,199111胡寿松自动控制原理:第4版北京:国防工业出版社12电工手册13曲永印主编.电力电子变流技术.北京:冶金工业出版社,199714黄俊主编.半导体变流技术.北京:机械工业出版社,198615坪岛茂彦.通用电机和控制电机实用手册M.机械工业出版社,1985.