高中数学解题方法——排列组合的常见题型及其解法.docx

上传人:精*** 文档编号:858213 上传时间:2023-09-20 格式:DOCX 页数:11 大小:212.61KB
下载 相关 举报
高中数学解题方法——排列组合的常见题型及其解法.docx_第1页
第1页 / 共11页
高中数学解题方法——排列组合的常见题型及其解法.docx_第2页
第2页 / 共11页
高中数学解题方法——排列组合的常见题型及其解法.docx_第3页
第3页 / 共11页
高中数学解题方法——排列组合的常见题型及其解法.docx_第4页
第4页 / 共11页
高中数学解题方法——排列组合的常见题型及其解法.docx_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、排列组合的常见题型及其解法 排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有

2、种站法;第二步再让其余的5人站在其他5个位置上,有种站法,故站法共有:480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有种;第二步再让剩余的4个人(含甲)站在中间4个位置,有种,故站法共有:(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有种,然后女生内部再进行排列,有种,所以排法共有:(种)

3、。三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有种,所以排法共有:(种)四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有种排列方法。例4. 由数字0、1、2、3、4、5组

4、成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?解:不考虑限制条件,组成的六位数有种,其中个位与十位上的数字一定,所以所求的六位数有:(个)五. 分排问题用直排法对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。例5. 9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有种。六. 复杂问题用排除法对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。在应

5、用此法时要注意做到不重不漏。例6. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( )A. 150种B. 147种C. 144种D. 141种解:从10个点中任取4个点有种取法,其中4点共面的情况有三类。第一类,取出的4个点位于四面体的同一个面内,有种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。以上三类情况不合要求应减掉,所以不同的取法共有:(种)。七. 多元问题用分类法按题目条件,把符合条件的排列、组合问题分成互不重复的若干类,分别计算,最

6、后计算总数。例7. 已知直线中的a,b,c是取自集合3,2,1,0,1,2,3中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。解:设倾斜角为,由为锐角,得,即a,b异号。(1)若c0,a,b各有3种取法,排除2个重复(,),故有:3327(条)。(2)若,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任意两条直线均不相同,故这样的直线有:33436(条)。从而符合要求的直线共有:73643(条)八. 排列、组合综合问题用先选后排的策略处理排列、组合综合性问题一般是先选元素,后排列。例8. 将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共

7、有多少种?解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,1),(1,2,1),共有:(种),第二步将这三组教师分派到3种中学任教有种方法。由分步计数原理得不同的分派方案共有:(种)。因此共有36种方案。九. 隔板模型法常用于解决整数分解型排列、组合的问题。例9. 有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?解:6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,将5个隔板插入9个空,每一种插法,对应一种分配方案,故方案有:(种)浅谈数学填空题的解题方法 填空题题小,跨度大,覆盖面广,形式灵活,可以有目的、和谐地综合一些问题

8、,突出训练学生准确、严谨、全面、灵活运用知识的能力和基本运算能力。从填写内容上,主要有两类,一类是定量填写,另一类是定性填写。要想又快又准地答好填空题,除直接推理外,还要讲究一些解题策略,下面谈谈几种解题方法,请大家教正。一. 定义法有些问题直接去解很难奏效,而利用定义去解可以大大地化繁为简,速达目的。例1. 的值是_。解:从组合数定义有:又代入再求,得出466。例2. 到椭圆右焦点的距离与到定直线x6距离相等的动点的轨迹方程是_。解:据抛物线定义,结合图1知:图1轨迹是以(5,0)为顶点,焦参数P2且开口方向向左的抛物线,故其方程为:二. 直接计算法从题设条件出发,选用有关定理、公式,直接计

9、算求解,这是解填空题最常用的方法。例3. 设函数的定义域是n,n+1(),那么在f(x)的值域中共有_个整数。解:直接计算,可得个。例4. 等比数列,公比,则:_。解:原式三. 数形结合法有些问题可以借助于图示分析、判断、作出定形、定量、定性的结论,这就是图解法。例5. 函数的值域_。图2解:原函数变为,可视上式为x轴上的点P(x,0)到两定点A(-2,-1)和B(2,2)的距离之和,如图2,则。故值域为。四. 特例法有的填空题答案是一个“定值”时,实质上有一种暗示作用,可以分析特殊数值,特殊位置,特殊数列,特殊图形等来确定这个“定值”,这种方法有时能起到难以置信的效果。例6. 面积为S的菱形

10、绕其一边所在直线旋转一周所得旋转体的表面积为_。解:以正方形代替菱形,设边长为a,则表面例7. 已知是公差不为零的等差数形,若Sn是的前n项和,那么_。解:取符合条件的特殊数列,则故五. 观察法运用特殊值,加上类比、观察常常可以提高解题速度。例8. 设,且,直线通过定点_。解:联合观察:发现时,即满足条件,同时,相交直线的交点是唯一的。故定点是(1,1)。六. 淘汰法当全部情况为有限种时,也可采用淘汰法。例9. 已知,则与同时成立的充要条件是_。解:按实数b的正、负分类讨论。当b0时,而等式不可能同时成立;当b0时,无意义;当b0时,若a0,b0,容易验证,这确是所要求的充要条件。七. 分析推

11、理法通过仔细审题,对问题进行逻辑分析,然后推理出符合条件的答案。例10. 已知不等式的解集是A,的解集是B,则不等式组的解集是_。解:设g(x)的定义域为S,由于的解集是B,所以的解集是。故所求不等式组的解集是。总之,我们在平时训练时,要善于思考,分析题意,灵活运用有关数学知识,在有多种方案可以解决问题的时候,努力选择更合理的解题方案,要不断提高解题过程中合理性、简捷性的意识,以达到巧解妙算的效果,力求做到费时少,准确率高。巧构造 妙解题 1. 直接构造例1. 求函数的值域。分析:由于可以看作定点(2,3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。解:令

12、,则表示单位圆表示连接定点P(2,3)与单位圆上任一点(,)所得直线的斜率。显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为1,即所以故例2. 已知三条不同的直线,共点,求的值。分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。解:设(m,n)是三条直线的交点,则可构造方程,即(*)由条件知,均为关于的一元三次方程(*)的根。由韦达定理知2. 由条件入手构造例3. 已知实数x,y,z满足,求证:分析:由已知得,以x,y为根构造一元二次方程,再由判别式非负证得结论。解:构造一元二次方程其中x,y为方程的两实根所以即故0,即3. 由结论入手构造例4. 求证:若,则分析:待证式的左边求和的分母是三次式,为降低分母次数,构造一个恒不等式。所以左边故原式得证。例5. 已知实数x,y满足,求证:分析:要证原式成立,即证即证由三角函数线知可构造下图,此时不等式右边为图中三个矩形的面积之和,而单位圆的面积为,所以故结论成立。

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 教学课件 > 中学教案课件 > 高中(三年级)课件教案

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922