1、目 录第一章 绪论1第一节 设计目的1第二节 国内外研究动态及发展现状1第三节 太阳能自动化水位控制整体结构介绍2第四节 太阳能工艺流程图2第二章 太阳能热水器控制器硬件选择5第一节 系统设计要求5第二节 PLC的选择5第三章 太阳能热水器控制器软件设计11第一节 PLC的I/O口分配与软元件的分配11第二节 软件的组成12第三节 系统控制流程图13第四节 梯形图程序14结束语15谢 辞16参考文献17附录 梯形图1819第一章 绪论 第一节 设计目的随着太阳能热水器的普及,如何更好地利用太阳能热水器成为人们的研究对象,太阳能水位自动化的控制成为一个现实的问题,由于太阳能热水器的注水箱大多安装
2、在房顶上,是否缺水不易观察,如何使用自动水位控制装置来控制水泵的工作,就能够很好的解决这个问题,从而给广大用户带来很大的方便。第二节 国内外研究动态及发展现状从上世纪八十年代起,国内外已经对太阳能水位控制进行了广泛的研究。而太阳热水器水位控制的技术难点在水位传感器。目前市场上有两种形式的传器,一种是利用水作介质进行导电的电极传感器,这种传感器的原理是只要把两电极接通就会有相应的信号传给主机,显示水位;另一种传感器是浮子式,这种传感器的原理就是利用电磁场开关干簧管,输出电信号。由于电极在水中导电不可避免地要电解电极,故电极式传感器的寿命一般长12年,电极加粗后寿命可达 34年。 山东赛佳公司从事
3、生产研究已多年,在传感器技术的研究上于 2000 年 3 月份终于研制成功谐振及硅压力两大系列水位传感器。这两个系列传感器由于没有采用导电和浮子式的投入式工作方式,传感器的工作环境大大改善,同时这样也从根本上解决了电极的电解和浮子的结垢问题。这两大系列传感器试制成功后,该公司并没有急于推向市场,而是为了保证传感器在工艺上尽善尽美,又进行了4 0多种方案的试验,而且在外界环境比较特殊的地区如高温、高寒、 多雷等地区进行了小批试验。历经一年多的的实地观察,事实证明这两大系列的传感器在技术上稳定可靠, 在工艺上制作简单,安装维修方便。 这两种传感器的研制成功,突破了太阳热水器水位控制在技术上的瓶颈,
4、必将带来整个行业的一次革命。 进步源于竞争,在我国太阳能拥有广阔的市场,当然也有更大的竞争,各大商家为了使自己的产品在市场上立足并长远发展, 不断提高太阳能热水器的性能, 其中太阳能热水器控制器以其灵活、贴近客户成为商家竞争的热点。目前,各大商家纷纷提高太阳能热水器的智能化程度来满足消费者的需求。许多太阳能热水器的功能有:开机自检、温控上水、强制上水、水位预置、水质设置、水温指示、低水压上水、水位显示、防高温空晒、缺水报警、自动防溢流、 缺水上水、手动上水、故障提示等许多贴近客户需求的功能。 目前太阳能控制器的控制器基本实现数字化,以单片机为控制核心的控制系统占领太阳能热水器的主要市场。在市场
5、调查中发现,太阳能控制单片机的型号较多,其中应用最多的是51系列和PIC系列单片机。太阳能热水器控制系统可以实现水位显示、水位控制、温度显示、防冻等多种功能,其中对水位的检测、控制、实现水位显示、自动上水、超限报警是太阳能热水器控制系统的核心。第三节 太阳能自动化水位控制整体结构介绍1.水位、水温测量电路。这部分用于采集水位水温信号给PLC,是太阳能热水器控制器最关键的部位。2时间、水位、温度显示和键盘电路。这部分用于系统和人的信息交互。3驱动电路。上水电磁阀、报警电路,是整个系统的执行部分。第四节 太阳能工艺流程图通过理解太阳能热水器工艺结构示意图,我们不难完成此热水器的流程图,流程图如下:
6、 开始报警器报警集热管是否有水流自来水进入太阳能集热水箱是否有阳光 摄入是否否是循环泵启动集热器加热冷热水进入混合水箱用户图1-1 太阳能工艺流程图热水器上电后,自来水进入太阳能集热箱,此时光辐射探测器检测是否有光摄入,若有足够光强摄入,PLC控制器将检测集热管是否有水流,如果没有水流,则报警器报警。如果有水流,则循环泵启动,集热器开始加热,集热完毕后,将加热的热水与冷水一同进入混合水箱以提供合适的水温进行洗浴,最后,热水器将温水传送给用户使用。第二章 太阳能热水器控制器硬件选择第一节 系统设计要求太阳能热水器的电路控制非常重要,好的智能控制仪表应该具备以下功能:1、太阳能集热循环控制白天太阳
7、能循环泵不间断连续运行,夏季夜晚停泵,冬季温控循环防冻。2、光辐射探测及循环水泵的控制当光辐射探测器探测到太阳光时,将相应电信号(020mA)输入PLC控制器,控制器输出信号启动循环泵实现循环,同时在管道上探测水流,当无水时将信号送入PLC控制器并报警。3、水位控制将水位传感器检测到的电信号(020mA)输入PLC控制器,到水位低于设定水位时控制器输出信号启动补水泵补水。4、压力控制将供水管网压力传感器检测到的电信号(020mA)输入PLC控制器,利用变频器对末端压力实现定压控制。5、加热控制根据需求端的实际用水情况,采用出水温度控制的方式控制锅炉的启停。当白天太阳辐射不足,储水箱温度达不到设
8、定值时,控制器自动启动锅炉加热,否则加热停止。第二节 PLC的选择S7-200的概述:S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能/价格比。S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床,磨床,印刷机械,橡胶化工机械,中央空调
9、,电梯控制,运动系统。S7-200系列出色表现在以下几个方面:第一,极高的可靠性。第二,极丰富的指令集。第三,易于掌握。第四,便捷的操作。第五,丰富的内置集成功能。第六,实时特性。第七,强劲的通讯能。第八,丰富的扩展模块。S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床,磨床,印刷机械,橡胶化工机械,中央空调,电梯控制,运动系统。S7-200系列PLC可提供4个不同的基本型号的8种CPU以供使
10、用。CPU单元设计集成的24V负载电源:可直接连接到传感器和变送器(执行器), CPU 221,222具有180mA输出,CPU 224, CPU 226分别输出280,400mA。 可用作负载电源。 不同的设备类型CPU221226各有2种类型CPU,具有不同的电源电压和控制电压。 CPU 221具6个输入点和4个输出点,CPU 222具有8个输入点和6个输出点,CPU 224具有14个输入点和10个输出点。CPU 226具有24个输入点和16个输出点。中断输入允许以极快的速度对过程信号的上升沿作出响应。CPU224的概述:根据控制系统要求 ,首先确定 PLC 的控制规模,估算出所需要的I/
11、O点数(数字输入/输出量、模拟输入/输出量) ,再增加10%20%的备用量,以便随时增加控制功能,保证系统投入运行后能够替换个别故障点或弥补遗漏的点数。统计出I/O总点数后即可以确定 PLC 的控制规模从而确定存储器(用于存储用户程序和数据)的容量。存储器容量除了根据PLC 的控制规模确定。也可以按照如下方法计算,再增加25%30 %的备用量,以便随时增加用户程序。一种方法是根据编程实际使用的节点数计算,即编完程序之后,根据节点数计算出实际使用容量。另一种方法是估算法,只有开关量时,所需内存总数=开关量(输入/输出)总数10;只有模拟量输入时,所需内存总数=模拟量路数120在模拟量输入、输出同
12、时存在时,所需内存总数=模拟量路数250;同时,应考虑PLC提供的内部继电器和寄存器的数量,以便节省资源。鉴于设计共需要补水泵急停开关、循环泵急停开关、水泵变频接触器动作信号、水泵工频接触器动作信号、锅炉急停开关、靶流开关、报警器急停开关、水泵手动开关、报警器手动开关、循环泵手动开关、补水泵手动开关、锅炉手动开关共12个开关量输入,水泵变频交流接触器、水泵工频交流接触器、报警器、循环泵、补水泵、当光强不足时循环泵控制、锅炉7个开关量输出,光合辐射有效传感器,3个PT100高温型铂电阻传感器、飞思卡尔MPX5700AP压电传感器、RG-2液位传感器共6个模拟量输入及变频器一个模拟量输出。因此考虑
13、使用CPU224并扩展两个EM235扩展单元。下面将分别介绍CPU224及EM235。CPU 224CPU224集成14输入/10输出共24个数字量I/O点。可连接7个扩展模块,最大扩展至168路数字量I/O点或35路模拟量I/O 点。13K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。1个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。是具有较强控制能力的控制器。 图2-1 CPU224EM235的概述:在工业控制中,压力、温度、流量和转速等输入量是模拟量,变频器、电动
14、调节阀和晶闸管调速装置等设备要求输出模拟量信号进行控制。CPU主机一般只有数字量I/O接口,或者是仅具有少量的模拟量接口,所以就要进行模拟量输入和输出模块的扩展才能满足控制要求。模拟量扩展模块的主要功能是数据转换,并与PLC内部总线相连,也有电气隔离功能。模拟量输入(A/D)模块是将现场由传感器检测产生的连续的模拟量信号转换成PLC内部可接受的数字量;模拟量输出(D/A)模块是将PLC内部的数字量转换为模拟量信号输出。EM235具有4个模拟量输入一个模拟量输出,考虑到本设计有七个模拟量输入一个模拟量输出,因此运用两个EM235便可解决问题。以下是EM235的各项技术规范:表2-1 EM235技
15、术规范通用技术规范尺寸(W x H x D)重量功耗点数71.28062mm186 g2 W4路模拟量输入,2路模拟量输出(实际的物理点数为:4输入,1输出)功率损耗+5V DC(从I/O总线)30mA从L+60mA(带输出20mA)L+电压范围,第2级或DC传感器供电20.428.8LED指示器24V DC状态亮=无故障,灭=无24V DC电源模拟量输入特性模拟量输入点数4隔离(现场与逻辑电路间)无输入类型差分输入输入范围电压(单极性)电压(双极性)电流010V,05V,01V,0500mV,0100mV,050mV10V,5V,2.5V,1V,500mV,250mV,100mV50mV,2
16、5mV020mA输入分辨率电压(单极性)电压(双极性)电流12.5V(050mV)25V(0100mV)125V(0500mV)250V(01V)1.25mV(05V)2.5mV(010V)12.5V(25mV)25V(50mV)50V(100mV)125V(250mV)250V(500mV)500V(1V)1.25mV(2.5V)2.5mV(5V)5mV(10V5A(010mA时)模数转换时间250s模拟量输入响应1.5ms95%共模抑制40dB,DC to 60HzEM 235 CN共模电压信号电压+共模电压(必须小于等于12V)数据字格式单极性,全量程范围 -32000+32000双极性
17、,全量程范围 032000-32000+320000032000输入阻抗大于等于10M输入滤波器衰减-3db3.1KHz最大输入电压30V DC最大输入电流32mA分辨率12位A/D转换器模拟量输出特性模拟量输出点数1隔离(现场侧到逻辑线路)无信号范围电压输出电注输出10V0 到 20mA数据字格式电压电流-32000+320000+32000分辨率,满量程电压电流12位11位精度最坏情况,055电压输出电流输出满量程的2%满量程的2%典型值,25电压输出电流输出满量程的0.5%满量程的0.5%设置时间电压输出电流输出100s2mS最大驱动24V用户电源电压输出电流输出最小 5000最大500
18、梯形图概述:梯形图是PLC使用得最多的图形编程语言,被称为PLC的第一编程语言。梯形图与电器控制系统的电路图很相似,具有直观易懂的优点,很容易被工厂电气人员掌握,特别适用于开关量逻辑控制。梯形图常被称为电路或程序,梯形图的设计称为编程。梯形图是PLC使用得最多的图形编程语言,被称为PLC的第一编程语言。梯形图与电器控制系统的电路图很相似,具有直观易懂的优点,很容易被工厂电气人员掌握,特别适用于开关量逻辑控制。梯形图常被称为电路或程序,梯形图的设计称为编程。第三章 太阳能热水器控制器软件设计 第一节 PLC的I/O口分配与软元件的分配表3-1 PLC的I/O口分配输入点代号工程名称输出点代号工程
19、名称Y0HL 启动指示灯X0SB启动按钮Y1HL1 总停指示灯X1SB1 总停按钮Y2HL2 除尘指示灯X 2SL1温度开关(常开)Y3HA 报警器X3SL2温度开关(常闭)Y4HL3 故障指示灯X4SB2 手动上水开关Y5YV1 供水电磁阀X5SB3手动排水开关Y6YV2 排水电磁阀X6SB4 手动消音开关Y13KM1除尘电机正传接触器 X7SB5 手动加热开关Y15YV3除尘阀表3-2 PLC的软元件分配序号代号名称数量规格型号备注0PLC可编程控制器1FX_2n-32MR-ES/继电器输出型1HL-HL3指示灯4AD16-22GLED显示,220V2KM1-KM2交流接触器2DJX-9线
20、圈电压:220V3SB1-SB5按钮5LAY37绿色4SB启动按钮1LAY37绿色5S自动/手动开关1SR26封闭式6SL1-SL2温度检测开关2TH22接通与断开最小温差1.17TC隔离变压器1BK-100电压:220V8FU1-FU8熔断器8RL1-15熔体2-10A9FR热继电器2JR16-20/3参照电机电流10M微型电动机1YYHS45电压220V频率50HZ11YA报警器1SWP-X100交流220V12YV2排水阀1SSFK-C014交流12-220V13YV1供水阀1SSFK-C024交直流3-220V14YC除尘阀1SSFK-C017交流220V第二节 软件的组成软件系统通常
21、分为两大类:一类是系统软件,另一类是应用软件。系统软件指的是操作系统、程序设计系统等与计算机密切相关的程序。系统软件一般由计算机生产商或各种软件公司提供,带有一定的通用性,用不着自己编写。本课题采用SIEMENS公司推出的s7-200系列PLC,所以系统软件是由SIEMENS公司提供的,该软件对系统进行实时监控。应用软件是用户根据要解决的实际问题而编写的各种程序。在计算机控制系统中,每个控制对象或控制任务都要有相应的控制程序,用这些控制程序来完成对象的不同要求,这种程序通常称为应用程序。本课题主要根据太阳能热水器的各种输入输出状态来编制PLC的梯形图程序。第三节 系统控制流程图主程序设计:各开
22、关状态检测执行用户程序是停止端口控制逻辑是否正常温度子程序防冻子程序压力子程序水位子程序否开始初始状态检查工作时间是否到是否是否设置工作时间段启动定时器端口控制逻辑是否正常终止工作图3-1主程序控制系统流程:水位子程序流程图开始液位传感器检测液位液位是否低于设定值补水泵启动液位是否高于设定值补水泵停止否是是否:图3-2 水位子程序流程图第四节 梯形图程序程序设计:用流程图表达出各控制对象的动作顺序,相互间的制约关系。明确寄存器空间的分配,专用寄存器的确定等。控制系统的程序的设计,主程序的编制及各功能子程序的编制以及程序的调试。其他辅助程序的设计,如故障应急程序等。根据控制系统流程图,绘制太阳能
23、热水器系统控制的梯形图,其梯形图见附录。结束语本课题设计了一个以单片机为核心配合其他外围电路的太阳能热水器智能控制系统、完成了对太阳能热水器容器内的水位测量、时间显示、缺水时自动上水、水溢报警、手动上水、参数设定等功能。完成了太阳能热水器水位的测量和显示电路与电源电路的设计,通过对水位、水温的测量监控、实现了自动上水、水溢报警、智能加热等功能,完成了用8255A扩展键盘和显示电路的设计,实现了温度时间共六位动态显示和4个独立键盘输入。完成了时钟电路设计、为系统提供了准确的时间显示、显示时、分。并为定时加热提供了时间参考、从而完成自动电加热。用键盘实现了手动上水、电加热、参数设置等功能。谢 辞在
24、这次基于PLC太阳能热水器水位控制的设计与实践中,我遇到了很多的问题。但我的指导老师在我完成这次作业中给予了我很大的帮助,如我在做水位测量电路的设计不知道该怎么进行时,老师给我讲解了其设计的精髓和应该注意的问题,帮助我很好的完成了这次设计和实践。在此我深深的感谢老师你对我的帮助和指导。让我在社会实践的道路上有了新的认识和体会,更加深刻的理解和明白了PLC设计的精髓。最后我对老师说一句:老师你辛苦了!参考文献1.袁任光,可编程序控制器技术与实例,华南理工大学出版社,2003年2.刘敏,可编程控制器技术 ,机械工业出版社,2000年3.邱公伟,可编程控制器网络通信及应用,清华大学出版社,2001年4.陈宏,可编程控制器 ( PLC) 的选型J,化工进展,2003年第22卷 12期附录