1、知识点1、二次根式定义形如a(a0)式子叫做二次根式;二次根式必须满足:含有二次根号;被开方数a必须是非负数(含有,且有意义)。被开方数可以是数,也可以是单项式、多项式、分式等代数式;判断时一定要注意不要化简,一定要有意义。知识点2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。根号下无分母,分母中无根号;被开方数中没有能开方的因数或因式。知识点3、二次根式的性质(1)非负性a (a0)是一个非负数注意:此性质可作公式记住,后面根式运算中经常用到(2)(a)=a (a0)注意:此性质既可正用,也可反用,反用的
2、意义在于,可以把任意一个非负数或非负代数式写成注意:(1)字母不一定是正数;(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替知识点4、最简二次根式和同类二次根式(1)最简二次根式:最简二次根式的定义:被开方数是整数,因式是整式;被开方数中不含能开得尽方的数或因式,分母中不含根号。同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式知识点5、二次根式计算分母有理化(1)分母有理化定义:把分母中的根号化去,叫做分母有理化。(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个
3、代数式互为有理化因式。有理化因式确定方法如下:单项二次根式:利用a a=a来确定,如下,分别互为有理化因式。两项二次根式:利用平方差公式来确定。如下列式子,互为有理化因式(3)分母有理化的方法与步骤:先将分子、分母化成最简二次根式;将分子、分母都乘以分母的有理化因式,使分母中不含根式;知识点6、二次根式计算二次根式的乘除(1)积的算术平方根的性质积的算术平方根,等于积中各因式的算术平方根的积。(2)二次根式的乘法法则两个因式的算术平方根的积,等于这两个因式积的算术平方根。(3)商的算术平方根的性质商的算术平方根等于被除式的算术平方根除以除式的算术平方根。(4)二次根式的除法法则两个数的算术平方根的商,等于这两个数的商的算术平方根。注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式知识点7、二次根式计算二次根式的加减二次根式的被开方数相同时是可以直接合并的,如若不同,需要先把二次根式化成最简二次根式,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。(1)判断是否同类二次根式时,一定要先化成最简二次根式后再判断。(2)二次根式的加减分三个步骤:化成最简二次根式;找出同类二次根式;合并同类二次根式,不是同类二次根式的不能合并