1、某综合车间局部通风除尘系统设计-摘 要本次课程设计首先是将车间划分成两个区域。然后计算出各设备排风罩的排风量,计算系统的排风量及阻力,进行除尘器和风机的选择,绘制通风系统布置图。 考虑到车间粉尘污染的特点以及进出空间的限制,比较各种类型的除尘器,选择了最合理的通风除尘方案,进行了通风除尘系统的设计。关键词:风量;风压;排风罩;除尘目 录1前言22排风量计算42.1设备概述42.2各设备排风量计算52.3各管路排风量计算73各通风系统的排风量和阻力计算93.1第一工作区排风量和阻力计算93.1.1绘制轴测图93.1.2确定管径和单位长度的摩擦阻力93.1.3确定各管段的局部阻力系数103.1.4
2、计算各管段的沿程摩擦阻力和局部阻力113.1.6除尘器及风机的选择133.1.7管道计算汇总143.2第二工作区排风量和阻力计算153.2.1 绘制轴测图153.2.2 确定管径和单位长度摩擦阻力153.2.3确定各管道的局部阻力系数163.2.4计算各管段的沿程摩擦阻力和局部阻力173.2.5对并联管路进行阻力平衡计算173.2.6风机的选择183.2.7管道计算汇总194总结20参考文献211前言人类在生产和生活的过程中,需要有一个清洁的空气环境(包括大气环境和室内空气或境)。因此,就要在生产和生活的过程采用通风和除尘技术。通风工程在我国实现四个现代化的进程中,一方面起着改善居住建筑和生产
3、车间的空气条件,保护人民健康、提高劳动生产率的重要作用;另一方面在许多工业部门又是保证生产正常进行,提高产品质量所不可缺少的一个组成部分。工业通风是控制车间粉尘、有害气体或蒸气和改善车间内微小气候的重要卫生技术措施之一。其主要作用在于排出作业地带污染的或潮湿、过热或过冷的空气,送入外界清洁空气,以改善作业场所空气环境。工业通风按其动力来源分为自然通风和机械通风。自然通风依靠室内外空气温度差所形成的热压和室外风力所形成的风压而使空气流动;机械通风则依靠通风机所形成的通风系统内外压力差而使空气沿一定方向流动。净化工业生产过程中排放出的含尘气体称为工业除尘。 风机生产行业引进国外技术,改变了以往风机
4、全压偏小、不适用于除尘系统的状况。新产品不但全压满足除尘工程的需求,而且噪声低、机械效率高、振动小,并有较好的防磨措施。 除尘系统风量调节技术的应用越来越普遍。以往仅靠液力耦合器使风机变速,现在已有多种变频调速器,适用于不同规格的电机,因而风量调节更易实现。除尘系统风量调节,离不开流量监测,已开发出含尘气体流量连续监测装置,具有不堵、阻力小、应用方便等特点,在除尘系统运行中发挥了很好的作用。 有些生产过程如原材料加工、食品生产、水泥等排出的粉尘都是生产的原料或成品,回收这些有用原料,具有很大的经济意义。在这些部门,除尘设备既是环保设备又是生产设备。本次课程主要是运用通风除尘技术知识对某综合车间
5、局部通风除尘系统进行设计。选取通风管道、除尘器及风机。工业防尘技术的前景是广大的:1、工业防尘法规更完善,执法更强化。进入21世纪,我国经济将继续高速发展,公众对工作和生活环境的要求将更高, 有关法规更趋完善,执法力度将更为加强。工业防尘技术必须在高效、低耗、可靠、方便等方面达到一个新的水平。2、加强工业防尘技术标准的建设。目前,许多防尘设施不规范,标准化程度差,质量不高,达不到预期效果。在尘源控制方面,尤显薄弱,工业防尘技术标准化问题,已直接影响工业防尘工作的进行。3、工业防尘技术将与生产工艺更紧密结合。首先,积极促进生产工艺及设备的改进,努力实现本质无害化,达到事半功倍之效;其次,工业防尘
6、技术应力求促进产品产量和质量的提高;再者,应更方便操作和维修。4、工业防尘将紧密结合节能。通过工业防尘技术的实施,使生产工艺简化,生产能耗降低;促进二次能源的回收;在保证防尘效果的同时,尽量减少处理风量,降低系统阻力,从而降低自身能耗等等。2排风量计算2.1设备概述通风管道设计计算主要包括以下步骤(通风除尘):1、确定通风除尘系统方案,绘制管路系统轴测图;2、对管路系统分段,注明管段长度、风量管部件位置等进行编号;3、假定管路系统不同管段的风速;4、根据假定速度和已知管段的风量确定各管段管径,计算管路阻力;5、通风除尘系统中的各并联支管的阻力平衡计算,其差值不宜大于10;一般通风系统管路阻力不
7、超过15;6、计算系统管路总阻力;7、除尘设备和通风机的选择。本次课程设计的车间包括两个工作区,两个工作区内的主要设备如表2.1所示。车间的高度为6.6米。工作温度为20,在20时空气密度为1.2Kg/m3。根据以上步骤,分别对第一工作区和第二工作区进行了管道设计。当车间内有不同的送、排风要求,或者车间面积较大,送、排风点较多时,为了便于运行管理,常分设多个送、排风系统。划分的原则:1、空气处理要求相同时、室内参数要求相同的,可划为一个系统。2、同一生产流程、运行班次和运行时间相同的,可划为一个系统。3、同一生产流程、同时工作的扬尘点相距不大时,宜合为一个系统。4、有毒和无毒的生产区,宜分开设
8、置通风系统和净化系统。若不要求回收,并且混合后不会爆炸或者混合后不会导致风管内结露的,可以合为一个系统。5、排风量大的排风电位于风机附近,不和远处排风量小的排风点和为同一个系统根据以上原则、各工艺设备产生的有害物成分,及厂区平面布置图,将1、2、3号设备划分为第一区,4、5、6号设备划分为第二区,各设备参数见表2.1表2.1 设备参数表编号设备工艺尺寸(mm)排风罩形式有害物成分设计参数1振动筛800800700整体密闭罩矿物粉尘罩缝隙总面积0.3渗入风速0.40.6m/s诱导气流0.35m3/s顶部接管标高1.5m局部阻力系数为0.52、3圆锥破碎机900800圆形罩矿物粉尘有害物距罩口1m
9、4、5镀铬600600(工作口)通风柜氢氟酸蒸汽顶部接管标高1.6m常温6酸洗10008001200槽边排风罩25%盐酸温度60o2.2各设备排风量计算1号整体密闭罩排风量由表2.1知,设备1为振动筛,其尺寸为800800700mm,排风罩形式为整体密闭罩,有害物成分是矿物粉尘。罩缝隙总面积0.3,渗入风速0.40.6m/s,诱导气流0.35m3/s,顶部接管标高1.5m,局部阻力系数为0.5。密闭罩的排风罩公式:q=q1+q2 (2.1)式中q防尘密闭罩的排风罩,m3/s;q1物料或工艺设备带入罩内的空气量,m3/s;q2由孔口或不严密缝隙吸入的空气量,m3/s;则实际排放量q=0.350.
10、60.3=0.53m3/s.2、3号圆形罩排风量由表2.1知,设备2、3为圆锥破碎机,其尺寸为900800,排风罩形式为圆形罩,有害物成分是矿物粉尘,有害物距罩口x=1m,罩口面积,取控制点吸入速度Vx=1m/s。所以实际排放量q2=q3=0.75(10x2F)Vx (2.2)得q2=q3=7.98m3/s.4、5号通风柜排风量由表2.1知,设备4、5工艺为镀铬,其工作口尺寸为600600mm,排风罩形式为通风柜,根据公式:q=q1VF (2.3)式中q通风柜排风量,m3/s;q1柜内污染气体发生量,m3/s;V工作孔上的控制风速,m/s,通常在1.01.5m/s之间,本次取1.2m/s;F工
11、作孔、观察孔及其他缝隙总面积,;安全系数,一般=1.11.2.计算得:q4=q5=01.250.60.61.2=0.54m3s6号槽边排风罩排风量由表2.1知,设备6的工艺为酸洗,酸洗槽的尺寸为10008001200,排风罩形式为槽边排风罩,有害物成分是25%盐酸。槽边排风罩分为单侧和双侧两种,单侧适用于曹宽B700mm,B700mm时用双侧因为本设备槽宽B=800700,所以槽边排风罩选为双侧。根据国家标准设计,条缝式槽边排风罩的断面尺寸(EF)共三种,250200mm,250250mm,200200mm。本设计选用EF=250250mm。E=250mm的称为高截面。高截面双侧排风(总风量)
12、计算公式 在工业通风中第47页中查得。为: (2.4)式中:A槽长,m;B槽宽,m;Vx边缘控制点的控制风速,m/s。本设计中为0.4m/s。 在工业通风中第228页,附录5 镀槽边缘控制点的吸入速度Vx中查得。由公式(2.4)得高截面双侧排风(总风量)为:。2.3各管路排风量计算将第一区设备用管道连接,对各管段进行编号。如图2.1 图2.1 管道连接图1号管路排风量即为1号排风罩排风量。同理,。4号管路风量为排入风量之和即:同理。6号管路和7号管路排风量相同,为除尘器排入风量的1.05倍。将第二区设备用管道连接,对各管段进行编号。如图2.2 图2.2 管道连接图同理, ,3各通风系统的排风量
13、和阻力计算3.1第一工作区排风量和阻力计算3.1.1绘制轴测图标出各管段长度和各排风点的排风量,轴测图详见附录I。3.1.2确定管径和单位长度的摩擦阻力在第一工作区内,设除尘风管垂直管最小风速,水平管最小风速,空气密度。管段1:通风管路为圆形钢板制风管根据公式: (3.1) (3.2) (3.3)式中 q-管道内的风量,;管道直径,;管道截面积,;管道内的风速,;由公式3.3得,根据通风管道统一规格,取,则实际流速,根据,可确定单位长度摩擦阻力系数。同理,可计算并查出管段2、3、4、5、6、7、8、9的管径、实际流速、单位长度摩擦阻力及各管段摩擦阻力。其结果见表3.2。3.1.3确定各管段的局
14、部阻力系数管段1:设备整体密闭罩,;90弯头(R=1.5d)一个;。合流三通(1-5),;。管段2:设备圆形罩,;90弯头(R=1.5d)一个; ,合流三通(3-4),;。管段3:设备圆形罩,; ,合流三通(3-4),;。管段4:设备槽边排风罩,;90弯头(R=1.5d)一个;管段5:90弯头(R=1.5d)两个;管段6:90弯头(R=1.5d)一个;管段7:在排尘管出口有一个带扩散管的伞形风帽(h/D=0.5),查得:。3.1.4计算各管段的沿程摩擦阻力和局部阻力根据公式 (3.4)式中局部阻力系数;风管内空气的平均流速,;空气的密度,;风管长度,m;可算出局部阻力,具体数据见表3.2。3.
15、1.5对并联管路进行阻力平衡计算 汇合点A:对汇合点A(见附录I)进行阻力平衡计算,。依据公式: (3.5) (3.6)式中D调整后的管径,;D原设计的管径,;P原设计的支管阻力,;P要求达到的支管阻力,。为使管段2、3达到阻力平衡,改变管段3的管径,增大其阻力。根据公式(3.6):根据通风管道统一规格,取。算出其对应的阻力:根据公式(3.5):此时仍处于不平衡状态,如继续减小管径,取D=700mm,其对应阻力为209.6pa,同样处于不平衡状态,因此,决定取D=800mm,在运行时再辅以阀门调节,消除不平衡。汇合点B:根据公式(3.6):根据通风管道统一规格,取。算出其对应的阻力:根据公式(
16、3.5): ,符合要求。3.1.6除尘器及风机的选择选择除尘器时必须全面考虑各种因素的影响,在设计中应考虑以下匹配问题: (1)除尘器出口净化后气体的粉尘浓度要与环保规定的排放浓度要求相匹配。设计时应根据处理气体的粉尘浓度, 处理量和环保规定的排放要求确定所要求除尘器的除尘效率, 然后选择合适的除尘器类型。在运行中, 还应注意由于运动工况不稳定对除尘效率的影响。(2)除尘器的性能要与处理的气体特性和粉尘性质相匹配。气体的温度、湿度、腐蚀性、可燃与爆炸性等都直接制约除尘器的使用。如袋式除尘器不能用于处理高温、高湿的气体。粉尘的粒径及其分布、粘结性、湿润性、比电阻、可燃性和浓度等性质直接决定了除尘
17、器的除尘效果和应用。不同的除尘器所能去除的粉尘粒径范围也不同;对于粘结性粉尘不宜采用袋式除尘器;比电阻大的粉尘电除尘效果差;疏水性粉尘不宜采用湿式除尘器;粉尘浓度高时应考虑采用双级除尘。(3)除尘器的收尘方法要与除下粉尘的处理方法相匹配。例如直接丢弃, 应考虑对环境的二次污染问题。(4)除尘器的费用要与企业的经济实力相匹配。对于小型生产厂应选用结构简单的、设备费和运动费少的除尘设备。表3.1 除尘器的性能除尘器名称适用的粒径范围(m)效率(%)阻力(pa)(Pa)设备费运行费重力沉降室惯性除尘器旋风除尘器卧式旋风水膜除尘器电除尘器袋式除尘器文丘里除尘器5020-505-1550.5-10.5-
18、10.5-1合流三通(1-3),=30,=0;管段2:通风柜的=0.5;=()=0.60;=0.5;合流三通(23)一个=0.2;120弯头(R=1.5d)一个=0.2;90弯头(R=1.5d)一个=0.17;。管段3:=()=0.39;=0.33;合流三通(3-5),=30,=0.1;管段4:槽边排风罩=2.34;=()=0.39 =0.33 合流三通(4-5),=30,=0.1;120弯头(R=1.5d)一个=0.2;90弯头(R=1.5d)两个=0.17;管段5:90弯头(R=1.5d)三个=0.17;管段6:在排尘管出口有一个带扩散管的伞形帽(h/D=0.5)查得:=0.6。3.2.4
19、计算各管段的沿程摩擦阻力和局部阻力根据公式(3-4)可算出局部阻力Z,具体数据见表3.2.3.2.5对并联管路进行阻力平衡计算汇合点A:根据公式(3-5)、(3-6)得=44%10%;为使管段1、2达到阻力平衡,改变2的管径,增大其阻力,根据公式(3-6):D2=246mm根据通风管统一规格,取D=250mm,算出其对应的阻力=57.9=95.8Pa;根据公式(3-5):=6.6%10%;根据公式(3-6):;根据通风管道统一规格,取D=320mm,算出其对应的阻力:=;根据公式(3-5):10%;此时仍处于不平衡状态,假设管径D=300mm,其对应的阻力为115.5Pa,则可以处于平衡状态,
20、为降低其阻力,因此决定取D=280mm,在运行时再辅以阀门调节,消除不平衡。3.2.6风机的选择计算系统总阻力和风量:=102.6+22.7+77.4+139.4=342.1Pa选择风机:风机风量:=1.15q=1.151.69=1.94m/s=6996.6m/h风机风压:风机型号:C4-72NO.5A主轴转速(r/min):1450流量(m/h):7164全压(Pa):580功率(kw):1.82轴功率(kw):1.40效率:82.1%电动机:型号:Y100L1-4功率(kw):2.23.2.7管道计算汇总将以上计算的数据进行整理汇总,最后得到表3.3管道水利计算表(二区),具体数据见表。表
21、3.3管道水利计算表(二区)管道编号流量m/长度m管径mm流速m/s局部阻力系数局部阻力pa单位长度摩擦阻力pa/m摩擦阻力pa管道阻力pa备注10.549250110.6748.6654102.620.5452808.80.8740.43.517.557.9阻力不平衡31.08436010.60.16.741622.740.5382808.62.98132.23.124.8157阻力不平衡51.6915.6450100.5130.6346.877.461.693045010.60.640.43.399139.420.542501178.640.532808.61574总结许多生产过程,如水泥
22、、耐火材料、有色金属冶炼、铸造等都会散发出大量的粉尘,如果任意向大气排放,将污染大气,危害人民健康,影响工农业生产。因此含尘空气必须经过净化处理,达到排放标准才排入空气,通风除尘系统就是净化含尘空气的有效手段。通风除尘系统的设计合理安排并布置管道,正确计算局部阻力和摩擦阻力以及最后确定风机的风压,这一系列的过程让我对通风除尘系统的设计流程有了一个系统的了解。通过课程设计达到了对工业通风这门课程的知识的深化的目的,把课程内容贯穿,使它更加系统化、逻辑化。同时也锻炼了我们的思维能力、绘图能力,在知识水平总体上有了一定的提高,也为我们以后的毕业设计打下了良好的基础。参考文献1 张殿印、王坚. 除尘工程设计手册M. 北京:化学工业出版社,2003.62 孙一坚. 工业通风M. 北京:化学工业出版社,20063 常华. 尘毒治理技术M. 沈阳:航空工业出版社,19954 陆跃庆. 供暖通风设计手册M. 北京:中国建筑出版社,19975 贾永康. 供热通风与空调工程施工技术M. 北京:机械工业出版社,20056 李家瑞. 工业企业环境保护手册M. 北京:冶金工业出版社,199321