1、第4章 数控车床的程序编制数控车床是目前使用最广泛的数控机床之一。数控车床主要用于加工轴类、盘类等回转体零件。通过数控加工程序的运行,可自动完成内外圆柱面、圆锥面、成形表面、螺纹和端面等工序的切削加工,并能进行车槽、钻孔、扩孔、铰孔等工作。车削中心可在一次装夹中完成更多的加工工序,提高加工精度和生产效率,特别适合于复杂形状回转类零件的加工。4.1 数控车削加工工艺4.1.1 数控车床加工的主要特点 数控车床与普通车床一样,也是用来加工轴类和回转体零件的。但是由于数控车床是自动完成内外圆柱面、圆弧面、端面、螺纹等工序的切削加工,所以数控车床特别适合加工形状复杂、精度要求高的轴类或盘类零件。数控车
2、床具有加工灵活,通用性强,能适应产品的品种和规格频繁变化的特点,能够满足新产品的开发和多品种、小批量、生产自动化的要求,因此被广泛应用于机械制造业。4.1.2 数控车床的类型对于数控车床的分类可以采取不同的方法,按主轴配置形式可分为卧式和立式两大类,;按刀架数量来分可分为单刀架和双刀架两种;按数控车床控制系统和机械结构的档次分为经济型数控车床、全功能数控车床和车削中心。4.1.3 车削用刀具及其主要特点1、数控车床可转位刀具特点数控车床所采用的可转位车刀,与通用车床相比一般无本质的区别,其基本结构、功能特点是相同的。但数控车床的加工工序是自动完成的,因此对可转位车刀的要求又有别于通用车床所使用
3、的刀具,具体要求和特点如表4.1所示。 表4.1可转位车刀特点要求特点 目的 精度高采用M级或更高精度等级的刀片; 多采用精密级的刀杆; 用带微调装置的刀杆在机外预调好。 保证刀片重复定位精度,方便坐标设定,保证刀尖位置精度。 可靠性高采用断屑可靠性高的断屑槽型或有断屑台和断屑器的车刀; 采用结构可靠的车刀,采用复合式夹紧结构和夹紧可靠的其他结构。 断屑稳定,不能有紊乱和带状切屑; 适应刀架快速移动和换位以及整个自动切削过程中夹紧不得有松动的要求。 换刀迅速采用车削工具系统; 采用快换小刀夹。 迅速更换不同形式的切削部件,完成多种切削加工,提高生产效率。 刀片材料刀片较多采用涂层刀片。 满足生
4、产节拍要求,提高加工效率。 刀杆截形刀杆较多采用正方形刀杆,但因刀架系统结构差异大,有的需采用专用刀杆。 刀杆与刀架系统匹配。 2、数控车床刀具的选刀过程数控车床刀具的选刀过程,如图4.1所示。从对被加工零件图样的分析开始,到选定刀具,共需经过十个基本步骤,以图4.1中的10个图标来表示。选刀工作过程从第1图标“零件图样”开始,经箭头所示的两条路径,共同到达最后一个图标“选定刀具”,以完成选刀工作。其中,第一条路线为:零件图样、机床影响因素、选择刀杆、刀片夹紧系统、选择刀片形状,主要考虑机床和刀具的情况;第二条路线为:工件影响因素、选择工件材料代码、确定刀片的断屑槽型代码或ISO断屑范围代码、
5、选择加工条件脸谱,这条路线主要考虑工件的情况。综合这两条路线的结果,才能确定所选用的刀具。下面将讨论每一图标的内容及选择办法。图4.1 数控车床刀具的选刀过程(1)机床影响因素“机床影响因素”图标如图4.2所示。为保证加工方案的可行性、经济性,获得最佳加工方案,在刀具选择前必须确定与机床有关的如下因素:1)机床类型:数控车床、车削中心;2)刀具附件: 刀柄的形状和直径,左切和右切刀柄;3)主轴功率;4)工件夹持方式。图4.2机床影响因素图4.3选择刀杆(2)选择刀杆“选择刀杆”图标如图4.3所示。其中,刀杆类型尺寸见表4.2。表4.2 刀杆类型尺寸刀杆类型外圆加工刀杆内孔加工刀杆 柄部截面形状
6、 刀杆尺寸柄部直径 D 柄部长度 l1主偏角选用刀杆时,首先应选用尺寸尽可能大的刀杆,同时要考虑以下几个因素:1)夹持方式;2)切削层截面形状,即切削深度和进给量;3)刀柄的悬伸。(3)刀片夹紧系统 刀片夹紧系统常用杠杆式夹紧系统,“杠杆式夹紧系统”图标如图4.4所示。图4.4杠杆式夹紧系统1) 杠杆式夹紧系统杠杆式夹紧系统是最常用的刀片夹紧方式。其特点为:定位精度高,切屑流畅,操作简便,可与其它系列刀具产品通用。2)螺钉夹紧系统特点:适用于小孔径内孔以及长悬伸加工(4)选择刀片形状图4.5选择刀片形状“选择刀片形状”图标如图4.5所示。主要参数选择方法如下:1) 刀尖角刀尖角的大小决定了刀片
7、的强度。在工件结构形状和系统刚性允许的前提下,应选择尽可能大的刀尖角。通常这个角度在35o到90O之间。图4.5中R型圆刀片,在重切削时具有较好的稳定性,但易产生较大的径向力。表4.3刀片形状适用场合-首选-次选2) 刀片基本类型刀片可分为正型和负型两种基本类型。正型刀片:对于内轮廓加工,小型机床加工,工艺系统刚性较差和工件结构形状较复杂应优先选择正型刀片。负型刀片:对于外圆加工,金属切除率高和加工条件较差时应优先选择负型刀片。选择方法见表4.3。图4.6工件影响因素 (5)工件影响因素“工件影响因素”图标如图4.6所示。选择刀具时,必需考虑以下与工件有关的因素:1)工件形状:稳定性;2)工件
8、材质:硬度、塑性、韧性、可能形成的切屑类型;3)毛坯类型:锻件、铸件等;4)工艺系统刚性:机床夹具、工件、刀具等;5)表面质量;6)加工精度;7)切削深度;8)进给量;9)刀具耐用度。表4.4选择工件材料代码加工材料组代码钢:非合金和合金钢高合金钢不锈钢,铁素体,马氏体P(蓝)不锈钢和铸钢:奥氏体铁素体奥氏体M(黄)铸铁:可锻铸铁,灰口铸铁,球墨铸铁K(红)NF金属:有色金属和非金属材料N(绿)难切削材料:以镍或钴为基体的热固性材料钛,钛合金及难切削加工的高合金钢S(棕)硬材料:淬硬钢,淬硬铸件和冷硬模铸件,锰钢H(白)按照不同的机加工性能,加工材料分成6个工件材料组,他们分别和一个字母和一种
9、颜色对应,以确定被加工工件的材料组符号代码,见表4.4。(6)确定刀片的断屑槽型代码或ISO断屑范围代码负型刀片的断屑范围正型刀片的断屑范围图4.8确定刀片断屑槽代码“确定刀片的断屑槽型代码或ISO断屑范围代码”图标如图4.8所示。ISO标准按切削深度aP和进给量的大小将断屑范围分为A、B、C、D、E、F六个区,其中A、B、C、D为常用区域,WALTER标准将断屑范围分为图中各色块表示的区域,ISO标准和WALTER标准可结合使用,如图4.8所示。根据选用标准,按加工的切削深度和合适的进给量来确定刀片的WALTER断屑槽型代码或ISO分类范围。4.1.4 数控车削加工工艺路线制定数控车床加工过
10、程中,由于加工对象复杂多样,特别是轮廓曲线的形状及位置千变万化,加上材料、批量不同等多方面因素的影响,具体在确定加工方案时,可按先粗后精、先进后远、刀具集中、程序段最少、走刀路线最短等原则综合考虑。4.2数控车床程序编制数控车削加工包括内外圆柱面的车削加工、端面车削加工、钻孔加工、螺纹加工、复杂外形轮廓回转面的车削加工等,在分析了数控车床工艺装备和数控车床编程特点的基础上,下面将结合配置FANUC-0I数控系统的HM-077数控车床重点讨论数控车床基本编程方法。 4.2.1 G功能 FANUC OI系统常用的G功能代码表表45 G功能关于G代码,有以下几点说明:(1) 表内00组为非模态指令,
11、只在本程序段内有效。其他组为模态指令,一次指定后持续有效,直到被本组其他代码所取代。(2) 标有*的G代码为数控系统通电启动后的默认状态。4.2.2 M功能 常用的M功能简介如下:M00: 程序暂停,可用NC启动命令(CYCLE START)使程序继续运行;M01:计划暂停,与M00作用相似,但M01可以用机床“任选停止按钮”选择是否有效;M03:主轴顺时针旋转;M04:主轴逆时针旋转;M05:主轴旋转停止;M08:冷却液开;M09:冷却液关;M30:程序停止,程序复位到起始位置4.2.3 F S T 功能一、进给功能(F功能)F功能指令用于控制切削进给量。在程序中,有两种使用方法。1、 每转
12、进给量 编程格式 G95 FF后面的数字表示的是主轴每转进给量,单位为mm/r。例:G95 F0.2 表示进给量为0.2 mm/r。2、每分钟进给量编程格式G94 F F后面的数字表示的是每分钟进给量,单位为 mm/min。例:G94 F100 表示进给量为100mm/min。 二、主轴转速功能(S功能)图4.9恒线速切削方式S功能指令用于控制主轴转速。编程格式 SS后面的数字表示主轴转速,单位为r/min。在具有恒线速功能的机床上,S功能指令还有如下作用。1、最高转速限制编程格式 G50 SS后面的数字表示的是最高转速:r/min。例:G50 S3000 表示最高转速限制为3000r/min
13、。 2、恒线速控制 编程格式 G96 S S后面的数字表示的是恒定的线速度:m/min。 例:G96 S150 表示切削点线速度控制在150 m/min。 对图4.9中所示的零件,为保持A、B、C各点的线速度在150 m/min,则各点在加工时的主轴转速分别为:A:n=1000150(40)=1193 r/minB:n=1000150(60)=795r/minC:n=1000150(70)=682 r/min 3、恒线速取消 编程格式 G97 S S后面的数字表示恒线速度控制取消后的主轴转速,如S未指定,将保留G96的最终值。 例:G97 S3000 表示恒线速控制取消后主轴转速3000 r/
14、min。三、刀具功能(T功能)T功能指令用于选择加工所用刀具。编程格式 T4.10设定加工坐标系T后面通常有两位数表示所选择的刀具号码。但也有T后面用四位数字,前两位是刀具号,后两位是刀具长度补偿号,又是刀尖圆弧半径补偿号。 例:T0303 表示选用3号刀及3号刀具长度补偿值和刀尖圆弧半径补偿值。T0300 表示取消刀具补偿。4.2.4工件坐标系设定(G50)编程格式 G50 X Z式中X、Z的值是起刀点相对于加工原点的位置。在数控车床编程时,所有X坐标值均使用直径值,如图4.19所示。 例:按图4.10设置加工坐标的程序段如下:G50 X128.7 Z375.14.2.5 快速定位和直线插补
15、1.快速定位(G00)G00指令命令机床以最快速度运动到下一个目标位置,运动过程中有加速和减速,该指令对运动轨迹没有要求。其指令格式: G00 X(U)_ Z(W)_ 因为X轴和Z轴的进给速率不同,因此机床执行快速运动指令时两轴的合成运动轨迹不一定是直线,因此在使用G00指令时,一定要注意避免刀具和工件及夹具发生碰撞。 图 4-11 如图4.11所示指令如下: G50 X200.0 Z263.0 G00 X40.0 Z212.0 或G00 U-160.0 W-51.0 2.直线插补(G01)G01指令命令机床刀具以一定的进给速度从当前所在位置沿直线移动到指令给出的目标位置。指令格式: G01
16、X(U)_Z(W)_F ;使用G01指令时可以采用绝对坐标编程,也可采用相对坐标编程。当采用绝对坐编程时,数控系统在接受G01指令后,刀具将移至坐标值为X、Z的点上;当采用相对坐编程时,刀具移至距当前点距离为U、W值的点上。如图4-12所示指令如下: G01 X40.0 Z20. F0.2; 绝对值指令编程 图4-12 G01 U20.0 W-25.9 F0.2; 相对值指令编程4.2.6 圆弧插补(G02 G03)圆弧插补指令命令刀具在指定平面内按给定的F进给速度作圆弧插补运动,用于加工圆弧轮廓。圆弧插补命令分为顺时针圆弧插补指令G02和逆时针圆弧插补指令G03两种。其指令格式如下: 顺时针
17、圆弧插补的指令格式:G02 X(U)_Z(W)_I_K_F_; G02 X(U)_Z(W)_R_ F_;逆时针圆弧插补的指令格式:G03 X(U)_Z(W)_ I_K_F_; G03 X(U)_Z(W)_R_ F_; 使用圆弧插补指令,可以用绝对坐标编程,也可以用相对坐标编程。绝对坐标编程时,X、Z是圆弧终点坐标值;增量编程时,U、W是终点相对始点的距离。圆心位置的指定可以用R,也可以用I、K,R为圆弧半径值;I、K为圆心在X轴和Z轴上相对于圆弧起点的坐标增量; F为沿圆弧切线方向的进给率或进给速度。 图4-13 当用半径R来指定圆心位置时,由于在同一半径R的情况下,从圆弧的起点到终点有两种圆
18、弧的可能性,大于180和小于180两个圆弧。为区分起见,特规定圆心角180时,用“+R”表示;180时,用“-R”。注意:R编程只适于非整圆的圆弧插补的情况,不适于整圆加工。例如,图4-13中所示的圆弧从起点到终点为顺时针方向,其走刀指令可编写如下:G02 X50.0 Z30.0 I25.0 F0.3; 绝对坐标,直径编程,切削进给率0.3mm/rG02 U20.0 W-20.0 I25.0 F0.3; 相对坐标,直径编程,切削进给率0.3mm/rG02 X 50. 0 Z30.0 R25.0 F0.3; 绝对坐标,直径编程,切削进给率0.3mm/rG02 U20.0 W-20.0 R25.0
19、 F0.3; 相对坐标,直径编程,切削进给率0.3mm/r4.2.7倒圆编程1、45倒角由轴向切削向端面切削倒角,即由Z轴向X轴倒角,i的正负根据倒角是向X轴正向还是负向,如图4.14a所示。 其编程格式为 G01 Z(W) Ii 。由端面切削向轴向切削倒角,即由X轴向Z轴倒角,k的正负根据倒角是向Z轴正向还是负向,如图4.14b所示。编程格式 G01 X(U) Kk。a)Z轴向X轴 b)X轴向Z轴图4.14 倒角2、 任意角度倒角在直线进给程序段尾部加上C,可自动插入任意角度的倒角。C的数值是从假设没有倒角的拐角交点距倒角始点或与终点之间的距离,如图4.15所示。 例:G01 X50 C10
20、 X100 Z-100图4.20 任意角度倒角3、 倒圆角 编程格式 G01 Z(W) Rr时,圆弧倒角情况如图4.21a所示。 编程格式 G01 X(U) Rr时,圆弧倒角情况如图4.21b所示。 图4-154、任意角度倒圆角 若程序为 G01 X50 R10 F0.2X100 Z-100则加工情况如图4.16所示。图4.16任意角度倒圆角例:加工图4.17所示零件的轮廓,程序如下:G00 X10 Z22 G01 Z10 R5 F0.2 X38 K-4 Z0 图4.17 应用例图4.2.8 程序暂停(G04) G04指令用于暂停进给,其指令格式是:G04 P_或G04 X(U)_ 暂停时间的
21、长短可以通过地址X(U)或P来指定。其中P后面的数字为整数,单位是ms;X(U)后面的数字为带小数点的数,单位为s。有些机床,X(U)后面的数字表示刀具或工件空转的圈数。该指令可以使刀具作短时间的无进给光整加工,在车槽、钻镗孔时使用,也可用于拐角轨迹控制。例如,在车削环槽时,若进给结束立即退刀,其环槽外形为螺旋面,用暂停指令G04可以使工件空转几秒钟,即能将环形槽外形光整圆,例如欲空转2.5s时其程序段为: G04 X2.5或G04 U2.5或G04 P2500; G04为非模态指令,只在本程序段中才有效。4.2.9 刀尖圆弧自动补偿值编程时,通常都将车刀刀尖作为一点来考虑,但实际上刀尖处存在
22、圆角,如图4.18所示。当用按理论刀尖点编出的程序进行端面、外径、内径等与轴线平行或垂直的表面加工时,是不会产生误差的。但在进行倒角、锥面及圆弧切削时,则会产生少切或过切现象,如图4.19所示。具有刀尖圆弧自动补偿功能的数控系统能根据刀尖圆弧半径计算出补偿量,避免少切或过切现象的产生。图4.18 刀尖圆角R图4.19刀尖圆角R造成的少切与过切图4.20 刀尖圆角R的确定方法G40-取消刀具半径补偿,按程序路径进给。G41-左偏刀具半径补偿,按程序路径前进方向刀具偏在零件左侧进给。G42-右偏刀具半径补偿,按程序路径前进方向刀具偏在零件右侧进给。在设置刀尖圆弧自动补偿值时,还要设置刀尖圆弧位置编
23、码,指定编码值的方法参考图4.20。图4.20 刀具补偿编程例:应用刀尖圆弧自动补偿功能加工图4.27所示零件:刀尖位置编码:3N10 G50 X200 Z175 T0101 N20 M03 S1500N30 G00 G42 X58 Z10 M08N40 G96 S200N50 G01 Z0 F1.5N60 X70 F0.2N70 X78 Z-4N80 X83N90 X85 Z-5N100 G02 X91 Z-18 R3 F0.15N110 G01 X94N120 X97 Z-19.5N130 X100N140 G00 G40 G97 X200 Z175 S1000 N150 M304.2.1
24、0 返回参考点检查(G27)G27用于检验X轴与Z轴是否正确返回参考点。指令格式为:G27 X(U)_ Z(W)_ X(U)、Z(W)为参考点的坐标。执行G27指令的前提是机床通电后必须手动返回一次参考点。执行该指令时,各轴按指令中给定的坐标值快速定位,且系统内部检查检验参考点的行程开关信号。如果定位结束后检测到开关信号发令正确,则参考点的指示灯亮,说明滑板正确回到了参考点位置;如果检测到的信号不正确,系统报警,说明程序中指令的参考点坐标值不对或机床定位误差过大。4.2.11 自动返回参考点(G28 G30)参考点返回指令G28、G30 G28 X(U) _ Z(W) _; 第一参考点返回,其
25、中X(U)、Z(W)为参考点返回时的中间点,X、Z为绝对坐标,U、W为相对坐标。参考点返回过程如图4-21所示。 G30 P2 X(U)_ Z(W)_; 第二参考点返回,P2可省略 G30 P3 X(U)_ Z (W)_; 第三参考点返回 G30 P4 X(U)_ Z(W)_; 第四参考点返回 第二、第三和第四参考点返回中的X(U)、Z (W)的含义与G28中的相同。如图3-14所示为刀具返回参考点的过程,刀具从当前位置经过中间点(190,50)返回参考点,其指令为:G30 X190 Z50; G30 U100 W30; 图4-21如图3-14中的虚线路径所示,如果参考点返回时不经过中间点,则
26、刀具会与工件发碰撞,引起事故。4.2.12 从参考点返回(G29)此指令的功能是使刀具由机床参考点经过中间点到达目标点.指令格式: G29 X Z ;其中X Z后面的数值是指刀具的目标点坐标.这里经过的其中间点就是G28指令所指定的中间点,故刀具可经过这一安全路径到达欲切削加工的目标点位置。所以用G29指令之前,必须先用G28指令,否则G29不知道中间点位置,而发生错误。4.2.13 螺纹切削指令(G32)基本螺纹切削方法见图4.22所示。编程格式 G32 X(U) Z(W) F式中:X(U)、 Z(W) - 螺纹切削的终点坐标值;X省略时为圆柱螺纹切削,Z省略时为端面螺纹切削;X、Z均不省略
27、时为锥螺纹切削;(X坐标值依据机械设计手册查表确定) F - 螺纹导程。螺纹切削应注意在两端设置足够的升速进刀段1和降速退刀段2。例:试编写图4.42所示螺纹的加工程序。(螺纹导程4mm,升速进刀段1=3mm,降速退刀段2=1.5mm,螺纹深度2.165 mm)。 G00 U-62 G32 W-74.5 F4 G00 U62图4.22 圆柱螺纹切削图4.23圆锥螺纹切削 W74.5 U-64G32 W-74.5G00 U64W74.5例:试编写图4.23所示圆锥螺纹的加工程序。(螺纹导程3.5mm,升速进刀段1=2mm,降速退刀段2=1mm,螺纹深度1.0825 mm)。G00 X12G32
28、X41 W-43 F3.5G00 X50W43 X10 G32 X39 W-43G00 X50W43 4.2.14 单一固定循环(G90 G92 G94)单一固定循环可以将一系列连续加工动作,如“切入-切削-退刀-返回”,用一个循环指令完成,从而简化程序。1、圆柱面或圆锥面切削循环 圆柱面或圆锥面切削循环是一种单一固定循环,圆柱面单一固定循环如图4.24所示,圆锥面单一固定循环如图4.26所示。 图4.24 圆柱面切削循环 (1)圆柱面切削循环 编程格式 G90 X(U) Z(W) F式中:X、Z- -圆柱面切削的终点坐标值;U、W-圆柱面切削的终点相对于循环起点坐标分量。例:应用圆柱面切削循
29、环功能加工图4.25所示零件。N10 G50 X200 Z200 T0101 N20 M03 S1000 图4.25 G90的用法N30 G00 X55 Z4 M08 N40 G01 G96 Z2 F2.5 S150N50 G90 X45 Z-25 F0.2N60 X40N70 X35N80 G00 X200 Z200 N90 M30(2)圆锥面切削循环编程格式 G90 X(U) Z(W) I F式中:X、Z- 圆锥面切削的终点坐标值;U、W-圆柱面切削的终点相对于循环起点的坐标;I- 圆锥面切削的起点相对于终点的半径差。如果切削起点的X向坐标小于终点的X向坐标,I值为负,反之为正。如图4.2
30、6所示。例:应用圆锥面切削循环功能加工图4.30所示零件。 图4.26 圆锥面循环G01 X65 Z2 G90 X60 Z-35 I-5 F0.2 X50G00 X100 Z2002、 端面切削循环端面切削循环是一种单一固定循环。适用于端面切削加工,如图4.27所示。(1)平面端面切削循环编程格式 G94 X(U) Z(W) F式中:X、Z- 端面切削的终点坐标值;U、W-端面切削的终点相对于循环起点的坐标。 图4.27 断面切削循环 例:应用端面切削循环功能加工图4.31所示零件。 G00 X85 Z5 G94 X30 Z-5 F0.2 Z-10 Z-15 (2)锥面端面切削循环 编程格式
31、G94 X(U) Z(W) K F式中:X、Z- 端面切削的终点坐标值;U、W-端面切削的终点相对于循环起点的坐标;K- 端面切削的起点相对于终点在Z轴方向的坐标分量。当起点Z向坐标小于终点Z向坐标时K为负,反之为正。如图4.28所示。 图4.28 锥面端面切削循环例:应用端面切削循环功能加工图4.29所示零件。 G94 X20 Z0 K-5 F0.2 Z-5 Z-10 3、螺纹切削循环指令 图4.29 螺纹切削循环指令把“切入-螺纹切削-退刀-返回”四个动作作为一个循环(如图4.30所示),用一个程序段来指令。 编程格式 G92 X(U) Z(W) I F式中:X(U)、 Z(W) - 螺纹
32、切削的终点坐标值; I - 螺纹部分半径之差,即螺纹切削起始点与切削终点的半径差。加工圆柱螺纹时,I=0。加工圆锥螺纹时,当X向切削起始点坐标小于切削终点坐标时,I为负,反之为正。 例:试编写图4.31所示圆柱螺纹的加工程序。图4.30螺纹切削循环图4.31 圆柱螺纹切削循环图4 .32圆锥螺纹切削循环应用G00 X35 Z104G92 X29.2 Z53 F1.5X28.6X28.2X28.04G00 X200 Z200 例:试编写图4.32所示圆锥螺纹的加工程序。 G00 X80 Z62 G92 X49.6 Z12 I-5 F2 X48.7 X48.1 X47.5 X47 G00 X200
33、 Z200 4.2.15 复合固定循环在复合固定循环中,对零件的轮廓定义之后,即可完成从粗加工到精加工的全过程,使程序得到进一步简化。1、轴向粗车复合循环(G71)图4.33 外圆粗切循环图4.34 G71程序例图外圆粗切循环是一种复合固定循环。适用于外圆柱面需多次走刀才能完成的粗加工,如图4.33所示。 编程格式: G71 U(d) R(e) G71 P(ns) Q(nf) U(u) W(w) F(f) S(s) T(t) 式中:d-背吃刀量;e-退刀量;ns-精加工轮廓程序段中开始程序段的段号;nf-精加工轮廓程序段中结束程序段的段号;u-X轴向精加工余量;w-Z轴向精加工余量;f、s、t
34、-F、S、T代码。 注意: 1、nsnf程序段中的F、S、T功能,即使被指定也对粗车循环无效。 2、零件轮廓必须符合X轴、Z轴方向同时单调增大或单调减少;X轴、Z轴方向非单调时,nsnf程序段中第一条指令必须在X、Z向同时有运动。 例:按图4.34所示尺寸编写外圆粗切循环加工程序。 N10 G50 X200 Z140 T0101 N20 G00 G42 X120 Z10 M08 N30 G96 S120 N40 G71 U2 R0.5 N50 G71 P60 Q120 U2 W2 F0.25 N60 G00 X40 /ns N70 G01 Z-30 F0.15 N80 X60 Z-60 N90
35、 Z-80 N100 X100 Z-90 N110 Z-110 N120 X120 Z-130 /nf N130 G00 X125 N140 X200 Z140 N150 M02 2、径向粗车循环(G72)端面粗切循环是一种复合固定循环。端面粗切循环适于Z向余量小,X向余量大的棒料粗加工,如图4.35所示。图4.35端面粗加工切削循环图4.36 G72程序例图编程格式G72 W(d) R(e)G72 P(ns) Q(nf) U(u) W(w) F(f) S(s) T(t) 式中:d-背吃刀量;e-退刀量;ns-精加工轮廓程序段中开始程序段的段号;nf-精加工轮廓程序段中结束程序段的段号;u-X
36、轴向精加工余量;w-Z轴向精加工余量;f、s、t-F、S、T代码。注意:(1)nsnf程序段中的F、S、T功能,即使被指定对粗车循环无效。(2)零件轮廓必须符合X轴、Z轴方向同时单调增大或单调减少。 例:按图4.36所示尺寸编写端面粗切循加工程序。 N10 G50 X200 Z200 T0101 N20 M03 S800 N30 G90 G00 G41 X176 Z2 M08 N40 G96 S120 N50 G72 W3 R0.5 N60 G72 P70 Q120 U2 W0.5 F0.2 N70 G00 X160 Z60 /ns N80 G01 X120 Z70 F0.15 N90 Z80
37、 N100 X80 Z90 N110 Z110 N120 X36 Z132 /nf N130 G00 G40 X200 Z200 N140 M30 图4.37 封闭切削循环图4.38 G73程序例图 3、仿形粗车循环(G73)封闭切削循环是一种复合固定循环,如图4.37所示。封闭切削循环适于对铸、锻毛坯切削,对零件轮廓的单调性则没有要求。编程格式 G73 U(i) W(k) R(d)G73 P(ns) Q(nf) U(u) W(w) F(f) S(s) T(t) 式中:i-X轴向总退刀量;k-Z轴向总退刀量(半径值);d-重复加工次数;ns-精加工轮廓程序段中开始程序段的段号;nf-精加工轮廓
38、程序段中结束程序段的段号;u-X轴向精加工余量;w-Z轴向精加工余量;f、s、t-F、S、T代码。例:按图4.38所示尺寸编写封闭切削循环加工程序。 N01 G50 X200 Z200 T0101 N20 M03 S2000 N30 G00 G42 X140 Z40 M08 N40 G96 S150 N50 G73 U9.5 W9.5 R3 N60 G73 P70 Q130 U1 W0.5 F0.3 N70 G00 X20 Z0 /ns N80 G01 Z-20 F0.15 N90 X40 Z-30 N100 Z-50 N110 G02 X80 Z-70 R20 N120 G01 X100 Z-80 N130 X105 /nf N140 G00 X200 Z200 G40 N150 M30 4、精加工循环指令(G70)由G71、G72、G73完成粗加工后,可以用G70进行精加工。精加工时,G71、G72、G73程序段中的F、S、T指令无效,只有在ns-nf程序段中的F、