玻璃横切结构及人机界面系统设计.doc

上传人:风**** 文档编号:970308 上传时间:2024-03-19 格式:DOC 页数:24 大小:256.50KB
下载 相关 举报
玻璃横切结构及人机界面系统设计.doc_第1页
第1页 / 共24页
玻璃横切结构及人机界面系统设计.doc_第2页
第2页 / 共24页
玻璃横切结构及人机界面系统设计.doc_第3页
第3页 / 共24页
玻璃横切结构及人机界面系统设计.doc_第4页
第4页 / 共24页
玻璃横切结构及人机界面系统设计.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、第一章概述1.1我国玻璃市场现状玻璃装饰建材产品在日常生活中已得到了广泛使用。但是,就我国目前的浮法玻璃生产技术而言,除了合资生产线达到国际先进水平外,其余均属一般水平,与国际先进水平相比存在着较大差距。国家每年需要花大量外汇从国外进口大量优质浮法玻璃,以满足国内建筑业,装饰,装修和玻璃深加工业对优质浮法玻璃的需求。1994年,全国优质浮法玻璃产量占总产量的5.5%,经综合分析预测,本世纪末我国浮法玻璃需求量为1.4亿重量箱,其中,优质浮法玻璃需求量为:交通运输业850-900万重量箱,建筑业12501300万重量箱,制镜业300350万重量箱,市场及其他400450万重量箱,出口600700

2、万重量箱,供给34003700万重量箱。占总产量的24.3%26.4%.我们应抓紧机遇,建设具有当代国际先进技术水平的浮法玻璃生产线,推进我国平板玻璃工业技术进步,生产出优质浮法玻璃,满足日益增长的市场需求,参与国际竞争,缩小我国浮法玻璃技术与国际先进水平的差距。1.2 我国浮法玻璃技术与国际先进水平的差距我国浮法玻璃技术与国际先进水平的差距表现在软件上是指浮法玻璃生产线各部分的自动控制能力和全线自动控制程度和水平。对于浮法玻璃的生产来说,高水平的自控可以最大限度的消除认为因素对玻璃质量的影响,从而达到稳定,高质量的生产。国内的浮法玻璃生产线一般都是以半经验半技术自控,自控程度和自控水平较低。

3、1.3 高精度玻璃切割的必要在加工浮法玻璃的过程中,高精度的玻璃切割作为加工的第一道工序是必不可少的。平板玻璃生产线是连续型生产线。原料在经过了熔化、成形、退火后成为连续的带状玻璃带。这条玻璃带必须经过在线切割才能满足包装与市场的需求。横切机就是玻璃在线切割必不可少的设备之一。它的设备形式、控制原理及与生产的匹配性直接影响了成品玻璃板的几何质量。平板玻璃生产线的特点是连续性和大规模,但是由于缺乏行之有效的控制方法,横切机切割质量的检测和调节一直是由人工来完成的。由于人工检测调节的间歇性、经验性和不确定性,玻璃切割质量的控制不能很好的针对工况的变化,同时又加重了工人的劳动强度。而横切机的切割系统

4、是一个离散、滞后、非线性不确定的系统。传统的控制方法又很难满足它的控制要求。采用先进的智能控制技术可以将这一问题较好的解决。1.4 玻璃横切机的分类由于目前各种工艺设备研究都相对独立, 造成了横切机名称与特征上的混乱与界限不明确的现状。以下是从平板玻璃横切机的工作原理和结构形式方面对其进行的分类。玻璃带为运动的带状物体, 运动速度为V L。为了保证成品玻璃板为矩形, 横切机的切刀必须同时具有纵向与横向两个方向的运动 (如图1 所示)。纵向运动使切刀与玻璃带保持运动同步, 即纵向运动速度V Z 与玻璃带运动速度V L 保持一致; 而横向运动则使切刀完成切割工作, 其运动速度为V H。切刀的横向运

5、动速度V H、刀口压力和刀刃状况决定了切痕的切口情况; 切刀的纵向运动速度V Z与玻璃带运动速度V L 的一致性与否, 则决定了切痕轨迹的几何形状。切刀两个方向的运动可以分别进行控制, 也可以由切刀的工作运动分解形成, 即V Z 和V H 可由切刀的工作运动速度V Q 及它与横向运动方向的夹角而确定, 并由此而决定了横切机机械运动机构的组成方式。根据横切机上用以承载切刀工作机构并担负其工作运动导轨作用的横梁与玻璃带输送辊道 (玻璃带运动方向) 的相互位置关系, 横切机机械运动机构的组成方式可以分为垂直式与斜置式。 垂直式横切机的切刀在工作运动过程中, 其横向运动与纵向运动分别由不同的运动执行机

6、构来实现的。在运动控制系统的作用下, 横向运动速度与纵向运动速度应分别满足玻璃切割工艺与随玻璃带同步运动的基本要求, 从而实现切刀对玻璃带的正确切割。斜置式横切机切刀的横向运动与纵向运动, 是由沿斜置横梁运动的切刀的工作运动分解形成的。横向运动速度和纵向运动速度的比例关系, 按照控制对象的不同, 由实际工作要求决定, 可以采用角度调节方式或速度控制方式实现。下面将分别对垂直式和斜置式横切机的机械运动机构的组成方式及其基本工作原理进行分析说明。1.4.1垂直式玻璃横切机如前所述, 垂直式横切机采用双运动执行机构,它的机械运动机构由横梁、横梁传动机构、横梁导轨、切刀小车、小车传动机构、小车导轨等组

7、成(如图2 所示)。横梁导轨安装在玻璃带输送辊道两边, 与玻璃带运动方向平行。切刀小车及其传动机构与导轨安装在横梁上, 横梁与玻璃带输送辊道 (玻璃带运动方向) 垂直放置。横梁在横梁传动机构的带动下做纵向往复运动, 切刀小车在其传动机构的带动下做横向往复运动。垂直式横切机的基本工作原理是: 根据实际生产的工况与要求, 运动控制系统与机构分别对横梁和切刀小车传动机构进行控制, 使横梁前行运动速度V Z= V L ; 同时, 在电机转矩、转速及负载情况允许的条件下, 应尽可能提高切刀小车的工作速度V H , 以减少横切机整体的工作循环时间。垂直式横切机的特点是控制方式简单易行, 但机械运动机构的组

8、成方式较为复杂,并由于横梁的运动惯量较大, 因而不适用于玻璃带运动速度较高的生产场合。在实际生产中, 垂直式横切机在平拉或格法玻璃生产线上应用较多。由于垂直式横切机的横梁速度应与玻璃带速度保持一致, 所以垂直式横切机又称为垂直随动式横切机。1.4.2斜置式横切机 由玻璃带在线切割时所必须具有的横向运动和纵向运动可知, 切刀的实际工作运动, 应该是这两个相互垂直方向上运动的合成。反之, 若控制切刀进行该合成运动, 则可以对应地分解为横向与纵向运动。斜置式横切机, 就是通过把决定切刀小车运动方向的横梁与玻璃带输送辊道 (玻璃带运动方向) 倾斜放置, 并对切刀小车沿横梁的工作运动进行控制, 而实现玻

9、璃带切割时所需的横向与纵向运动。 切刀小车的工作运动速度V Q 与横向运动速度V H 和纵向运动速度V Z 的关系, 可以由式 (1) 和式(2) 表示, 其中为V Q 与V H 之间的夹角。V H= V Qcos (1)V Z= V Qsin (2) 在玻璃切割过程中, 为了保证切痕的平直, 切刀的纵向运动必须与玻璃带的运动保持同步, 即必须保证V Z= V L。当V L 为恒量或基变量时, 由式(2) 可知, 可以通过分别控制和V Q 来实现V Z 与V L 相等的要求。若仅变化 , 则称为角度调节方式;若仅变化V Q , 则称为速度控制方式。此外, 由于机械运动机构实现困难, 通常都不会

10、采用对 和V Q同时调控的方式。(1) 角度调节式横切机采用角度调节方式的斜置式玻璃横切机, 称为角度调节式横切机。它的机械运动机构由横梁、切刀小车、小车导轨、小车传动机构和角度调节装置等所组成 (如图3 所示)。在角度调节时, 可令V Z= V Qsin = V L (3)则有 = arcsinV LV Q(4)若保持V Q = 常量, 则角度与V L 之间的关系可由式 (4) 确定。在实际生产中, 由于产品规格与实际工况的改变, 将会引起V L 的改变。因此, 需要根据实际确定的或实际测出的V L , 由式 (4) 中求出对应的值 (0, 90 ) , 并据此调节横梁的实际斜置角度。根据平

11、板玻璃生产线的工艺特点, 玻璃带的运动速度与所生产的玻璃规格有关。生产的玻璃越厚,则拉引速度越慢, 即玻璃带运行速度越低 (V L 越小) ; 反之, 生产的玻璃越薄, 则拉引速度越快, 即玻璃带运行速度越高 (V L 越大)。由式 (4) 和式 (1) 中可以看出, V L 越小 (V Z= V L ) , 则 越小, 而相应V H 就会越大; 反之, V L越大 (同样有V Z= V L ) , 则越大, 而相应V H 就会越小。在实际切割时, 当玻璃带运动速度越快时, 除了要求切刀的同步速度V Z 要更快外, 实际的切割周期也必须越短, 即V H 也必须越快。切割周期是指横切机的切刀从初

12、始状态 (位置) 启动直到重新回到下一个初始状态 (位置) 所经历的全部时间。它包括工作行程时间t前、停顿等待时间t停 和返回下次初始状态 (位置) 时间 t返 (如图4 所示) , 并可由式(5) 表示。其中停顿等待时间与返回时间往往设成定值, 而工作行程时间则通常决定于切割条件与切割运动的实际调节控制方式。t= t前+ t停+ t返 (5)在角度调节时, 由V Q = 常量, 对于同样尺寸规格的产品, 无法保证V Z 和V H 同时提高的要求。此外, 由横切机驱动电机的机械特性可知, 驱动电机在正常调速范围内, 转速越高则它所输出的转矩就越小。而角度调节式横切机在生产中实际切割薄玻璃时,

13、由于同步运动的需要, V Z 较高, 则电机实际输出转矩的纵向转矩分量较小, 而相应的横向转矩分量则较大。同理, 当需要在生产中切割厚玻璃时, 对应驱动电机的输出转矩的纵向转矩分量较大, 而其横向转矩分量则较小。但在浮法玻璃生产线上, 玻璃越薄, 玻璃的切割阻力越小, 横切机的切刀压力也就越小, 即相应驱动电机的横向负载越轻, 所需的横向转矩越小; 反之, 玻璃越厚, 玻璃的切割阻力越大, 横切机的切刀压力也就越大, 即驱动电机的横向负载也就越重, 所需的横向转矩越大。这恰与角度调节式横切机的实际工作状态相反,因而不能很好地满足实际切割工作的需要。目前, 角度调节式横切机仅在一些应急的、非生产

14、关键环节上有限使用, 但一般都不作为生产线上的主用横切机。而且, 角度调节一般都是针对某种相对固定的产品规格及以相对稳定工况为前提而进行的, 难以根据实际的V L 实现无级自动跟踪式的调节。(2) 速度控制式横切机 采用速度控制方式的斜置式玻璃横切机, 称为速度控制式横切机。它的机械运动机构由横梁、刀具小车、小车导轨、小车传动机构等组成 (如图5 所示)。这是机械运动机构组成方式最为简单的横切机, 也是目前使用最为广泛的。当进行速度控制时, 由式 (3) 中可以得到V Q =V Lsin (6)由于为定值, 由式 (6) 可知, 切刀工作运动速度V Q 与玻璃带运动速度V L 成正比。因此,

15、可根据实际测出的V L , 就能通过式 (6) 求出对应的V Q ,最终根据V Q 来控制驱动电机的实际运行。由于为定值, 则由式 (1)、(2)、(6) 中还可以得出V HV QV L (7)V ZV QV L (8)由式 (7)、(8) 可知, 当V L 增大时, V Q 增大,V H 与V Z 也都相应增大, 而驱动电机所输出的负载转矩则相应减小。当V L 减小时, V Q 减小, V H 与V Z也都相应减小, 而驱动电机所输出的负载转矩则相应增大。这与玻璃实际生产时, 玻璃带理论运动速度随板材厚度变化时所需的切刀横向与纵向的运动状态和切割工艺要求相一致, 并且由于机械运动机构组成方式

16、简单可靠, 因此速度控制式横切机作为生产线上的主用横切机而得到了广泛的应用。在速度控制时, 由于切刀的工作运动速度V Q需根据玻璃带实际运动速度V L 而定, 即V Q 随着V L的变化而变化, 所以速度控制式横切机通常又称为随动斜置式横切机。目前, 对切割过程中的切刀速度的控制策略有两种: 在切刀切割的过程中, 切刀的速度与玻璃带的速度在每一时刻都保持式 (6) 的关系, 即完全随动的策略, 切刀速度为时时变化的。以这种控制策略控制的横切机称为完全随动斜置式横切机。当切刀停止时, 控制器根据玻璃带速度按式 (6) 不停的计算着切刀的速度。当切刀启动时, 切刀以最后计算的速度为切刀速度进行玻璃

17、的切割。即不完全随动的策略, 每一次切割过程中, 切刀的速度是不变的。以这种控制策略控制的横切机称为不完全随动斜置式横切机。第二章 设计方案2.1、研究内容研究方向、内容随着单片机、PLC技术的发展,传统的控制系统逐渐被新型智能控制系统取代。鉴于PLC比单片机成本高,且输入/输出点数受到限制。本次毕业设计我主要研究单片机技术的全自动玻璃横切结构,分别对其机械结构和人机界面系统进行设计。以下为欲设横切机的功能设定:1)机械系统功能:切割速度方向要求:玻璃带为运动的带状物体, 运动速度为V L。为了保证成品玻璃板为矩形, 横切机的切刀必须同时具有纵向与横向两个方向的运动 (如图1 所示)。纵向运动

18、使切刀与玻璃带保持运动同步, 即纵向运动速度V Z 与玻璃带运动速度V L 保持一致; 而横向运动则使切刀完成切割工作, 其运动速度为V H。刀架运动要求;接到单片机控制信号后,落刀,由同步带带动沿横梁方向切割玻璃,抬刀,返回原落刀点。其中落刀刀口压力要控制在指定厚度的玻璃的承载范围之内。要保证其对玻璃的冲击不至于使玻璃损坏。横梁的直线度不低于对玻璃的直线度的要求。2)人机界面系统功能:手动输入所要切割的玻璃的长度,切片数量,落刀位置,抬刀位置等参数,并可以通过键盘修改相关参数。键盘设置急停键,抬刀键、回车键,以便切割出现问题时手动处理。2.2、实现方法2.2.1机械结构方案对综述中提到的几种

19、横切机的结构的比较本次毕业设计我也决定采用斜置式速度控制式机械结构。机械结构简图如图6.123456781 主电机 2 同步带 3 刀架 4 气动元件 5 玻璃切割刀6 支杆 7 被切玻璃 8 工作台(玻璃输送机构)图6 自动玻璃横切机机械结构组成具体工作过程:1、 通电:由键盘输入所切玻璃长度、切片数量、,落刀、抬刀位置这四个参数。点击启动键,系统开始运行。2、 启动主电机;启动按下后单片机发出控制信号,启动主电机,同步带带动刀架到指定落刀位置。3、 切割:传感器检测玻璃输送情况,到达要求长度时,单片机控制落刀并切割到指定抬刀位置,抬刀。将单片机计数单元中的切片数量减一。刀架以最大回车速度运

20、动到指定落刀点。4、 显示:将单片机计数单元中的数值传输给LCD并显示,全程显示落刀、抬刀位置、切割玻璃长度。5、系统自动重复3、4步至实际切割片数等于设定切割片数或手动停车为止。2.2.2控制系统方案1)主电机控制单元为了保证加工过程的连续性和生产效率,切刀必须连续不断地工作,同时因切割玻璃长度的不同,主电机应持续通电,且能够调速以适应不同切断长度的需要。考虑到此要求,本设计中主电机采用步进电机,并变频器进行速度控制。2)单片机控制模块单元处理器用单片机主要用于信号的采集,数据的处理、控制信号的输出等,它是整个控制系统的核心。键盘完成加工参数以及干预信号的输入。考虑到以后显示功能的扩展,本设

21、计采用的是汉字图形点阵液晶显示模块。 单 片 机步进电机驱动器步 进 电 机传感器键 盘L C D图7 控制系统结构原理2.2.3软件流程方案根据自动横切记的自动化过程,采用模块化结构设计。设计掉电保护程序,保护工作状态信息和加工参数,以便恢复生产。本次毕业设计我只编写人机界面系统的程序,包括:LCD驱动程序、显示程序、键盘监控程序。玻璃横切机总体工作流程图如下:开始系统初始化控制参数输入RUN一组片数到否停止切割YN图8 玻璃横切机总体工作流程图2.3设计任务主要内容:1. 设计玻璃切割机的机械结构。根据玻璃切割机的工况,设计合理的机械结构,达到结构简洁、工作可靠、易维护的设计目的。2. 设

22、计人机界面系统。包括人机界面的单片机硬件电路,设计相关软件,画出程序流程图,然后分别编写各个模块程序,包括:LCD驱动程序、键盘监控程序、显示程序等。主要设计技术指标:1. 使用最大原版宽度 4.5 m ;2. 对角线切割精度 5mm ,切割直线度 0.5 ;3. 使用玻璃厚度 1.519 mm ;4. 最大回车速度 3m/s ,适用玻璃带速度 50m-1200m/H ;5. 安装斜置角7 ;6. 控制器带有LCD和键盘,能够显示切片数量、落刀位置、抬刀位置等参数,并可以通过键盘修改相关参数。2.4 总体方案的确定2.4.1机械传动部件的选择(1) 同步带传动副的选用 由于同步带常以钢丝绳作负

23、载心层,由与钢丝绳受载后变形极小,仍能保持带长不变,故带与带轮间不会产生相对滑动,传动比恒定。同步带薄而轻,可用于高速场合,线速度可达40m/s,传动比可达10,效率可达98%.(2) 伺服电动机的选用 从设计任务书规定的内容来看脉冲当量尚未达到0.001mm ,定位精度未达到微米级,空载最快移动速度也只有3m/s 。因此,本设计不采用高档次的伺服电动机,如交流伺服电动机或直流伺服电动机等,可以选用性能好的一些步进电动机,以降低成本,提高性价比。 任务书所给的精度对于步进电动机来说可以达到,所以选用开环控制。2.4.2控制系统的设计(1) 对于步进电动机的开环控制,选用MCS-51 系列的8位

24、单片机AT89C51作为控制系统的CPU ,应该能够满足任务书给定的相关指标。(2) 人机界面选用44的薄膜式矩阵键盘,显示选用RT12864M汉字图形点阵液晶显示模块。第三章 机械部分设计计算此处删减NNNNNNNNNNNNNNNN字 需要整套设计请联系q:99872184。图13“检查忙碌标志BF”子程序流程图#00H送入ADDR1#04H送入N1#DHZTAB1送入DPTR调用汉字显示子程序#10H送入ADDR1#04H送入N1#DHZTAB2送入DPTR调用汉字显示子程序#08H送入ADDR1#04H送入N1#DHZTAB3送入DPTR调用汉字显示子程序#18H送入ADDR1#04H送

25、入N1#DHZTAB4送入DPTR调用汉字显示子程序返回图14液晶固定显示子程序流程图DPTR入栈ACC入栈ADDR1值送入ADDRN1值送入BADDR值送入A#80H和A进行与运算调写命令子程A取反A+DPTR 送入ADPTR加1调用“写资料到GLCD”子程A取反A+DPTR 送入ADPTR加1调用“写资料到GLCD”子程B减1,B=0?NYACC出栈DPTR出栈返回图15汉字显示子程序流程图2a汉字显示子程序程序流程图见图15图中ADDR为起始的显示位置。第一步,将现在的DPTR入栈保护;第二步,将现在的ACC值入栈保护;第三步,将ADDR1值送入ADDR(将起始显示位置临时变量的值送入起

26、始显示位置中);第四步,将N1值送入B(显示字数送入B);第五步,将ADDR值送入A;第六步,让A值与80相与,值送入A(即送显示地址,参见附录汉字显示坐标);第七步,调用“写命令到GLCD”子程(见1a子程说明);第八步,A值取反;第九步,查找汉字的高位码;第十步,DPTR加1;第十一步,调用“写资料到GLCD”子程序(见2b子程序);第十二步,A值取反;第十三步,查找汉字低位码;第十四步,DPTR加1;第十五步,调用“写资料到GLCD”子程序(见2b子程序);第十六步,B值减一并判断B是否为零,是则继续,不是则返回第八步重新循环;第十七步,ACC出栈;第十八步,DPTR出栈;第十九步,返回

27、主程序。2b“写资料到GLCD”子程序程序流程图见图16DPH入栈DPL入栈调“检查忙碌标志BF”子程写数据口地址送入DPTRDPTR送入ADPL出栈DPH出栈返回图16“写资料到GLCD”子程序流程图第一步,将现在的DPTR值入栈保护, 第二步,调“检查忙碌标志BF”子程(见1b子程序说明);第三步,写数据口地址送入DPTR(即设置数据口写地址);第四步,DPTR地址中的数送入A(写数据代码);第五步,DPTR出栈;第六步,返回主程序。键盘监控程序模块3 键盘扫描子程序子程序流程图见图17F0 清0P1口清0P1口低四位置1(键盘列置1)P1值送入AA=#0FH?F0 清0F0 置1返回NY

28、图17键盘扫描子程序流程图键盘的硬件连接图见附录。程序第一步,F0用户标志位清0;第二步,P1口清0;第三步,将0FH送入P1口(即把P0低四位置1,键盘各列置1,行为高四列,列为低四列);第四步,将P1口值送入A(如果此时有键按下,则P0的低四位将不全为1,即A值将不等于0FH); 第五步,判断A值是否等于0FH,如果相等就表示没有键按下,继续执行下一步程序,如果不相等即表示有键按下,转入执行第八步(YOUJIAN)程序;第六步,F0用户标志位清0;第七步,跳至执行第九步(DONE0)执行程序;第八步,F0用户标志位置1;第九步,返回主程序。4 判断是否有键按下如图10人机界面的监控管理程序

29、流程图所示,程序在这一环节,判断F0用户标志位是否为1,不是1则返回去再执行键盘扫描子程序,等于1则继续向下执行判段键值子程序。5 判断键值子程序(程序流程图如图18所示)延时去抖动,行值计数器R1清0对A口进行行扫描行扫描值左移1位读列值被按键在本行?YN行值计数器加1扫描完一遍?N返回Y被按键在0列?被按键在1列?列首键号00H送入A列首键号04H送入A被按键在2列?列首键号08H送入A被按键在3列?列首键号0CH送入AYYYYNNN列首号加行值送入A查表得键值送入A图18判断键值子程序流程图第一步,延时去抖动(在按下某个键时,被按键的簧片总会有轻微抖动,这种抖动常常会持续10ms左右。因

30、此,CPU在按键抖动期间扫描键盘必然会得到错误的列首号和行值,最好的办法是使CPU在检测到有键值按下时延时再进行行向扫描),行值计数器R1清0,送04H给R3,表示还未扫描的行数;第二步,对A口进行行扫描,(即将0F7H送入R0;将R0值送入A,这时A中为11110111);第三步行扫描值左移1位读列值(即把A左移,变为11101111,使行最低位为0;把变化了的A值还给R0以备扫描下一行用;送0FFH给P1,把P1所有位置1;让P1和A与,使P1的第五位为0,若一行有键按下则有对应的列变为0,p1第一位变为0;延时去抖动);第四步,判断被按下键在不在本行,如果在则进入第七步列值判断程序,如果

31、不再则继续执行下一步(让A和0F0H与,把行置1;判断A 是否等于0FFH,如果A等于FF,表示扫描行无键按下,若不等则有键按下);第五步R1加1,即把行数加1;第六步,判断是否扫描完一遍(R3减1,并判断R3是否等于0,),是则跳至子程序尾的第十步返回主程序,否则返回第二步在对A口进行扫描;第七步,列值判断程序,首先判断被按键是否在0列(ACC.0是否等于0),是则将列首号00H送入A,跳至第八步,否则判断被按键是否在1列(ACC.1是否等于0),是则将列首号04H送入A,跳至第八步,否则判断被按键是否在2列(ACC.2是否等于0),是则将列首号08H送入A,跳至第八步,否则判断被按键是否在

32、3列(ACC.3是否等于0),是则将列首号0CH送入A;第八步,列首号加行值送入A(即R1加A);第九步查表送键值给A(BIAO送入DPTR,在用DPTR加A求得偏移量,继而将键值送给A);第十步,返回主程序。6数字键?将A与10 作比较,A小于10,则进入数字键处理程序,若A大于或等于10则进入功能键处理程序。6a数字键处理程序程序流程图如图19所示第一步,R5(数字键按下次数累加存储单元)加1;第二步,判断将数字显示在第几行,28H.0,28H.1,28H.28H.3,分别为液晶四行数字位置是否有显示的标志位,当液晶的某一行的显示数字已经输入完毕并确认后,此行对应的标志位将被置1.所以在这

33、里判断这四个标志位是否为1即可指导此行是否需要显示数字。按顺序进行,即判断28H.0是否等于0,是则进入YIHANG子程;否则第三步,判断28H.1是否等于0,是则进入ERHANG子程;否则第四步,判断28H.2是否等于0,是则进入SANHANG子程;否则第五步,判断28H.3是否等于0,是则进入SIHANG子程; 否则表示所有数值输入完毕,不再需要输入,进入第六步,返回主程序。6a1 YIHANG 子程序程序流程图见图20第一步,将83H(第一行数字显示的起始位置)送入30H;第二步,将现在的ACC值入栈保护;第三步,将30H中的值送入A;第四步,A与R5相加得值存入A(即得到现在输入的数字

34、的显示位置);第五步,将A值送入31H(保护已求得的显示位置);第六步,ACC出栈;第七步,进入数字显示子程。(6a2至6a4程序语句与6a1相同,只是第一步送的数不同,按顺序分别送#93H,#8BH,#9BH)。6a5数字显示子程序程序流程图见图21第一步,将现在的DPTR值入栈保护;第二步将现在的ACC值入栈三次(以为后续程序会多次用到A值,所以要进行多次入栈);第三步,31H值给A即送显示位置;第四步,调“写INC R528H.0=0?28H.1=0?28H.2=0?28H.3=0?YYYYNNNNSTARTYIHANG6a1ERHANG6a2SANHANG6a3SIHANG6a4数字显

35、示6a5图19数字键处理程序流程图命令到GLCD”子程序1a ;第五步,ACC出栈;第六步,ACC交换高低四位元;第七步,将A值和#0FH与,保留低四位元;第八步,数字表表头地址送入DPTR;第九步,将DPTR加A求得的数字送入A;第十步,调“写资料到GLCD”子程序2b;第十一步,ACC出栈;第十二步,将A值和#0FH与,保留低四位元;第十三步,将DPTR加A求得的数字送入A;第十四步,调“写资料到GLCD”子程序2b;第十五步,ACC出栈;第十六步,DPTR出栈;第十七步,返回主程序。6b功能键处理程序程序流程图见图22第一步,将功能键表JTAB表头地址送到DPTR;第二步,A减10H,结

36、果送入A,即在A中形成JTAB表地址偏移量;第三步,A 左移一位;第四步,转入相应的功能键分支程序。7a确认功能键分支程序程序流程图见图23第一步,判断28H.0是否等于零,即判断第一行数字显示是否未确定,是则转入YI;否则第二步,判断28H.1是否等于零,即判断第二行数字显示是否未确定,是则转入ER;否则第三步,判断28H.2是否等于零,即判断第三行数字显示是否未确定,是则转入SAN;否则第四步,判断28H.3是否等于零,即判断第四行数字显示是否未确定,是则转入SI ;否83H送入30HACC入栈30H的值送入AACC与R5相加A送入31HACC出栈跳至数字显示子程图20 YIHANG 子程

37、序流程图则表示所有参数输入完毕,第五步,跳转START重新进行键盘扫描。如果进入分支YI,则第一步,将28H.0置1,即将第一行数字显示标志位置1;第二步,将R5清零,即数字键按下次数累加器清零;第三步,跳转回START重新进行键盘扫描。其他三个分支同理,即将自己的标志位置1,将R5清零,在跳转回START。7b“清屏”功能键处理子程序程序流程图见图24第一步,将现在的ACC值入栈保护;第二步,将01H送入A,即将清屏命令送入A;第三步,调用“写命令到GLCD”子程序(见1a);第四步,ACC出栈;第五步,送00H到28H,即数字显示标志位清零;第六步,R5清零,即数字键按下次数累加器清零;第

38、七步,跳转到LOOP,即返回到GLCD固定显示。以上,人机界面控制系统的程序设计完毕,源程序见附录。DPTR入栈ACC入栈ACC入栈ACC入栈31H值送入A调“写命令到GLCD”子程ACC出栈ACC高低四位交换ACC和#0FH与数字表表头地址送入DPTRDPTR+A送入A调“写资料到GLCD”子程ACC出栈ACC和#0FH与DPTR+A送入A调“写资料到GLCD”子程ACC出栈DPTR出栈返回图21 数字显示子程序流程图送JTAB到DPTRA减10HA 左移一位转入A+DPTR图22 功能键处理子程序流程图28H.0=0?28H.1=0?28H.2=0?28H.3=0?跳转到STARTYYYY

39、NNNN28H.0置128H.1置128H.2置128H.3置1R5清零图23“确认”功能键处理子程序流程图ACC入栈01H送入A调“写命令到GLCD”子程序ACC出栈00H送入28HR5清零跳转到LOOP图24“清屏”功能键处理子程序流程图结束语本文设计了一种玻璃横切机的机械结构及其人机界面系统。首先详细了解了各种玻璃横切机的机械结构,及其相应的切割特征。最终选择了斜置式速度控制式的机械结构。对传动系统的主要部件的同步带、步进电动机、轴承、主传动轴进行了选型、计算、校核。绘制了机械结构装配图、支架、刀架、机箱、法兰盘、主传动轴的零件图。进行控制系统设计,绘制了电路原理图。人机界面系统设计,其

40、硬件由矩阵键盘、RT12864M ST7920 汉字图形点阵液晶显示模块组成。实现功能为:液晶显示切割玻璃长度、切片数量、落刀位置、抬刀位置四项参数,并可以通过键盘修改这些参数。做了软件设计、程序编写包括LCD驱动程序、键盘监控程序、显示程序三大模块。画出了软件流程图,包括总流程图及各个子程序流程图,并对程序进行了详细的说明。大致完成了任务书的要求。由于技术、时间有限存在很多不足之处,望老师批评指导。参考文献1. 尹志强.机电一体化系统设计课程设计指导书.机械工业出版社.2007.72. 胡汉才.单片机原理及其接口技术.清华大学出版社.2004.23. 纪名刚.机械设计.高等教育出版社.200

41、1.64. 银尧城.简明实用机械手册.机械工业出版社.1987.65. 王建华.机械制图与计算机绘图.国防工业出版社.2004.96. 龚振邦,等 机器人机械设计【M】. 北京:电子工业出版社,19957. 殷际英编著 光机电一体化理论基础. 化学工业出版社8. 薛万鹏等译 C程序设计教程. 机械工业出版社.9. 聂刚. 平板玻璃横切机的分类及类别特征. 玻璃,2002 年第 2 期总第161 期10. 杨清翔 李文江.单片机在玻璃自动计数系统中的应用. 辽宁工程技术大学学报 2005年4月 第24卷增刊11. 欧耀海.机电一体化全自动横切机. 玻璃 2007 年 第 6 期 总第 195 期12. 刘克福 李晓虹。基于单片机技术的全自动横切机研制。 微机算计信息(嵌入式与SOC) 2008年 第24卷 第12期13. 叶文才.自动玻璃切割机控制系统的设计14. 张瑞 张宇干 谈军 费晓勇.浮法玻璃横切机智能控制系统的开发. 中国建材装备15. 孟正大郝立戴先中. 开放式玻璃自动切割机计算机控制系统. 电气传动2003 年第 3 期word文档 可自由复制I编辑

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 教学课件 > 中学教案课件 > 初中(七年级)课件教案

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922