单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核.doc

上传人:精*** 文档编号:864383 上传时间:2023-09-29 格式:DOC 页数:28 大小:816.51KB
下载 相关 举报
单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核.doc_第1页
第1页 / 共28页
单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核.doc_第2页
第2页 / 共28页
单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核.doc_第3页
第3页 / 共28页
单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核.doc_第4页
第4页 / 共28页
单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、目录一、设计目的3二、设计任务和要求42.1 设计计算说明书的要求42.2 分析讨论及说明书部分的要求52.3 程序计算部分的要求5三、设计题目5四、设计内容74.1 画出曲轴的内力图74.2 设计曲轴颈直径d和主轴颈D94.3 校核曲柄臂的强度104.4 校核主轴颈H-H截面处的疲劳强度134.5 用能量法计算A-A截面的转角qy,qz14五、分析讨论及必要说明19六、设计的改进措施及方法19七、设计体会20八、参考文献21九、附录22一、设计目的本课程设计是在系统学完材料力学课程之后,结合工程实际中的问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合利用材料力

2、学知识解决工程实际问题的目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体,既从整体上掌握了基本理论和现代计算方法,又提高了分析问题、解决问题的能力;既是对以前所学知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)的综合运用,又为后续课程的学习打下基础,并初步掌握工程设计思路和设计方法,使实际工作能力有所提高。具体有以下六项:1. 使所学的材料力学知识系统化、完整化。2. 在系统全面复习的基础上,运用材料力学知识解决工程实际中的问题。3. 由于选题力求结合专业实际,课程设计可把材料力学与专业需要结合起来。4. 综合运用以前所学的各门课程的知识(高等数学、工程图学

3、、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。5. 初步了解和掌握工程实际中的设计思路和设计方法。6. 为后续课程的教学打下基础。二、设计任务和要求参加设计者要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并到处计算公式,独立编制计算机程序,通过计算机给出计算结果,并完成设计计算说明书。2.1 设计计算说明书的要求设计计算说明书是该题目设计思想、设计方法和设计结果的说明。要求书写工整,语言简练,条理清晰、明确,表达完整。具体内容应包括:(1) 设计题目的已知条件、所求及零件图;(2) 画出构件

4、的受力分析计算简图,按比例标明尺寸,载荷及支座等;(3) 静不定结构要画出所选择的基本静定系统及与之相应的全部求解过程;(4) 画出全部内力图,并标明可能的各危险截面;(5) 危险截面上各种应力的分布规律图及由此判定各危险点处应力状态图;(6) 各危险点的主应力大小及主平面位置;(7) 选择强度理论并建立强度条件;(8) 列出全部计算过程的理论根据、公式推导过程以及必要的说明;(9) 对变形及刚度分析要写明所用的能量法计算过程及必要的内力图和单位力图;(10)疲劳强度计算部分要说明循环特征,max,min,m,a的计算,所查k,各系数的依据,并绘出构件的持久极限曲线,疲劳强度校核过程及结果。2

5、.2 分析讨论及说明部分的要求1. 分析计算结果是否合理,并讨论其原因、改进措施。2. 提出改进设计的初步方案及设想。3. 提高强度、刚度及稳定性的措施及建议。2.3 程序计算部分的要求1. 程序框图2. 计算机程序(含必要的语言说明及标识符说明)。3. 打印结果(数据结果要填写到设计计算说明书上)。三、设计题目7.2 单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT4505)弹性常数为E、,许用应力,G处输入转矩为Me ,曲轴颈中点受切向力Ft、径向力Fr 的作用,且Fr=Ft/2。曲柄臂简化为矩形截面,1.4h/D1.6 ,2.5h

6、/b4 ,l31.2r。已知固定数据和设计计算数据如下表:题目要求:(1)画出曲轴的内力图。(2)设计曲轴颈直径d ,主轴颈直径D 。(3)设计h,b。(4)校核主轴颈 H-H 截面处的疲劳强度,取疲劳强度系数n=2。键槽为端铣加工,主轴颈表面为车削加工。(5)用能量法计算A-A截面的转角y,z。 四、设计内容4.1 画出曲轴的内力图4.1.1 画出分析图4.1.2 外力分析画出曲轴的计算简图(上图),计算外力偶矩。 计算反力: 在XOY平面内: 在XOZ平面内: 4.1.3 内力分析(1) 主轴颈的EF左端(1-1)截面为最危险截面,受扭转和两向弯曲。 (2) 曲柄臂DE段下端(2-2)为危

7、险截面,受扭转、两向弯曲和压缩。 (3) 曲柄劲CD段中间截面(3-3)为危险截面,受扭转和两向弯曲。 4.1.4 作曲轴内力图单位:力F/(N) 力矩M/(Nm)注:不计内力弯曲切应力,弯矩图画在受压侧。 4.2设计曲轴颈直径d和主轴颈D(1) 主轴颈的危险截面为EF段的最左端1-1截面,受扭转和两向弯曲,根据主轴颈的受力状态,可用第三强度理论计算: 其中: 得: 取:(2) 曲柄颈CD属于圆轴弯扭组合变形,由第三强度理论,在危险截面3-3中 其中: 得: 实际取:4.3 校核曲柄臂的强度:曲柄臂的危险截面为矩形截面,受扭转、两向弯曲及轴力的作用。为确定危险点的位置,画出曲柄臂上(2-2)截

8、面应力分布图。曲柄臂的强度计算:图4 应力分布图根据应力分布图可判定出可能的危险点为,。图5危险点分布图插入法确定,:由已知,得查材料力学P70中表3-1知:表3 矩形截面杆扭转系数、v表(部分)2.53.04.00.2580.2670.282v0.7670.7530.745当时,利用插入法: 解得:当时,利用插入法,同理可得:校核:出于经济性考虑,应该尽量使截面积S=hb最小。根据以上分析可以编写计算机程序,取遍h、b所有值,计算出h、b的最优值。由附录中C程序可以求出最优值如下:具体求解过程通过C语言程序运行可得;由程序得h,b的最佳值为 查材料力学(机械工业出版社)P70页表3-1得:

9、此时D1点处于单向应力状态: 所以:点满足强度要求。此时D2点处于二向应力状态,受扭转切应力作用: D2点的正应力为轴向力和绕Z轴的弯矩共同引起的: 由第三强度理论: 因为 所以点不满足强度条件。 D3点处于二向应力状态 根据第三强度理论: 所以点满足强度理论条件。综上所述:曲柄臂不满足强度条件。4.4校核主轴颈H-H截面处的疲劳强度查询QT450-5材料的强度极限为:查询材料力学(机械工业出版社)课本P369图13-10及表13-3得:端铣加工得键槽有效应力集中系数 当表面为车削时表面质量系数已知 FH 处只受扭转作用:所以扭转切应力为脉动循环。安全系数:所以,H-H截面的疲劳强度符合强度要

10、求。4.5 用能量法计算A-A截面的转角y,z。采用图乘法分别求解截面的转角y,z。(1)求y:在截面A加一单位力偶矩My。并作出单位力偶矩作用下的弯矩图与外载荷作用下的弯矩图My如下(画在受弯的一侧,计算过程如下):由平衡方程得:B点的弯矩为: E点的弯矩为: 由图乘法: 查表得:杆件的抗扭刚度: 由公式: 得:(2) 求z:在截面A加一单位力偶矩Mz。并作出单位力偶矩作用下的弯矩图Mz与外载荷作用下的弯矩图Mz如下(画在受弯的一侧):同理得:B点的弯矩为:E点的弯矩为:由公式: 得:五、分析讨论及必要说明在本次设计中,做以下几点说明:(1)在外力分析时,在设定未知力的时候,由于已知没有X方

11、向的外力,故未设FAx,FFy。(2)在画内力图时,不计弯曲切应力,故未画剪力图。(3)在强度计算方面,由于材料是球墨铸铁,其物理性质与钢相近,所以采用第三强度理论而不用第一或第二强度理论。(4)在胶合曲柄臂画内力分布时,把曲柄臂的危险截面简化成矩形,忽略圆孔对其的影响。(5)在疲劳强度校核H-H截面时,忽略键槽对tmax的影响。六、设计的改进措施及方法6.1 提高曲轴的弯曲强度合理安排曲轴的受力情况及设计合理的截面,但对于该曲轴只能采用合理安排曲轴的受力情况。在机械结构允许的情况下,可采取将集中载荷适当分散或将集中力尽量靠近支座。6.2 提高曲轴的弯曲刚度提高弯曲刚度的主要措施有:改善结构形

12、式,减少弯矩的数值,选择合理的截面及合理选材等。但对于该曲轴只能改善结构形式,减少弯矩的数值及合理选材。6.3 提高曲轴的疲劳强度提高疲劳强度的主要措施有减缓应力集中及提高曲轴的表面强度等。为了消除和缓解应力集中,再设计曲轴时,应尽量避免出现方形直角或带有尖角的孔和槽,即在主轴颈和曲柄臂相连处应采用半径较大的过度圆角,提高曲轴表面的强度可通过两方面实现,一是从加工入手,提高表面加工质量,可采用精细加工降低表面粗糙度,如果将材料改为高强度钢就尤其要注意;二是增加表面强度,对曲轴中应力集中的部位如键槽处应采取某些工艺措施,即表面热处理或化学处理,如表面高频淬火、渗碳、滚压、喷丸等。七、设计体会通过

13、这次的课程设计,我对材料力学有了更深一层的认识:材料力学是一门被各个工程广泛应用的学科,是通过理论与实验来进行强度、刚度、稳定性以及材料的力学性能的研究。在保证安全、可靠、经济节省的前提下,为构件选择适当的材料,确定合理的截面形状和尺寸提供基本理论和计算方法。初步了解和掌握工程实践中的设计思想和设计方法。这次的课程设计让我深知理论与实际相结合的重要性,为后续课程的学习打下基础。此外,我深深的体会到了仅仅掌握课本中的理论和方法是远远不够的,工程实际中的一些问题要比想象的复杂的多,只有不断进行工程问题的分析和研究,从中获得大量的宝贵经验,才能以最经济的代价、最合理的方法解决遇到的难题。此次课程设计

14、让我受益匪浅,设计中还有很多不足,希望老师批评指正。八参考文献 1聂毓琴,孟广伟等,材料力学第2版),北京,机械工业出版社,2009.12聂毓琴等,材料力学实验与课程设计,北京,机械工业出版社,2006.83谭浩强,C程序设计(第四版),北京,清华大学出版社,2010.6九、附录9.1 求h,b程序#include#include#define PI 3.1415926int main() double Mex,Mey,Mez,FN2;double h,b,S=120e6,S1,S2,S3;int D=39;double Z1,Z2,Z3,Q2,Q3;double h1,b1;double a

15、,r;double s,max=(1.6*D)*(0.4*1.6*D); /*面积最大值*/Mex=477.45;Mey=434.64;Mez=217.32;FN2=1509.18;printf(*汽车学院*沈静祺*42120724*n);printf(* *n);printf(* 所用数据:P=15.6kw n=260r/min r=0.06m *n);printf(* *n);for(h=1.4*D;h=1.6*D;h+=0.01) for(b=0.25*h;b=2.5&h/b=3) /*利用插入法确定a,r*/a=0.213+0.018*h/b;r=0.837-0.028*h/b;els

16、ea=0.222+0.015*h/b;r=0.777-0.008*h/b;Z1=1e6*FN2/(b*h)+6e9*Mex/(b*h*h)+6e9*Mez/(b*b*h); /*D1点正应力*/ Z2=1e6*FN2/(b*h)+6e9*Mez/(b*b*h); /*D2点正应力*/ Z3=1e6*FN2/(b*h)+6e9*Mex/(b*h*h); /*D3点正应力*/ Q2=1e9*Mey/(b*b*h*a); /*D2点切应力*/Q3=r*Q2; /*D3点切应力*/S1=Z1; S2=sqrt(Z2*Z2+4*Q2*Q2);S3=sqrt(Z3*Z3+4*Q3*Q3);if(S1S&S

17、2S&S3S) s=b*h;if(s=2.5&h/b=3) /*带回,利用插入法求a,r*/a=0.213+0.018*h/b;r=0.837-0.028*h/b;elsea=0.222+0.015*h/b;r=0.777-0.008*h/b;printf(* 解得h和b值为: h=%.2lfmm b=%.2lfmm *n,h,b);printf(* *n);printf(* 解得a和r值为: a=%.3lf r=%.3lf *n,a,r);printf(* *n);printf(*汽车学院*沈静祺*42120724*n);return 0;9.2 程序框图9.3 C语言程序#include#

18、include#define Pi 3.1415926#define G 1000#define R 120main()double L1,L2,L3,E,u,Si,Sib,Tao,Fai,Ep; /定义已知量float P,n,r; /定义输入的可变量double Me,Ft,Fr,FAy,FAz,FFy,FFz,M1x,M1y,M1z,M2x,M2y,M2z,M3x,M3y,M3z,FN2; /定义设计过程中各力矩及力的符号double Sir1,Sir2,B,D,d;double h,b,h1,b1,Sigma1,Sigma2,Sigma3,Sigmar2,Sigmar3,alfa,ga

19、ma,tao1,tao2;/定义计算过程中常数及转换量double W,taomax,Ktao,Bata,ntao;double Z1,Z2,Z3,Q2,Q3,Y2,Y3, a,s,m=1.6*D*0.4*1.6*D;L1=0.11,L2=0.18,E=150e9,u=0.27,Si=120e6,Sib=450e6,Tao=180e6,Fai=0.05,Ep=0.78;printf(L1=%f,L2=%f,E=%f,u=%f,Si=%f,Sib=%f,Tao=%f,Fai=%f,Ep=%fn, L1,L2,E,u,Si,Sib,Tao,Fai,Ep);/定义及输出已知量printf(Pleas

20、e input date:P,n,rn);scanf(%f,%f,%f,&P,&n,&r); /输入可变量L3=1.2*r;Me=9549*P/n;Ft=Me/r;Fr=Ft/2; /求解外力偶矩及外力FAy=Fr*L2/(L1+L2);FAz=Ft*L2/(L1+L2);FFy=Fr*L1/(L1+L2);FFz=Ft*L1/(L1+L2);M1x=Me;M1y=FFz*(L2-L3/2);M1z=FFy*(L2-L3/2);/求解各方向弯矩M2x=Me;M2y=FFz*(L2-L3/2);M2z=FFy*(L2-L3/2);FN2=FFy;M3x=FAz*r;M3y=FAz*L1;M3z=

21、FAy*L1;printf(M1x=%.2f,M1y=%.2f,M1z=%.2f,M2x=%.2f,M2y=%.2f,M2z=%.2f,M3x=%.2f,M3y=%.2f,M3z=%.2f,FN2=%.2fn,M1x,M1y,M1z,M2x,M2y,M2z,M3x,M3y,M3z,FN2);Sir1=sqrt(M1x*M1x+M1y*M1y+M1z*M1z);B=32*Sir1/Pi/Si;D=pow(B,1.0/3.0); /利用pow函数求解主颈轴直径DSir2=sqrt(M3x*M3x+M3y*M3y+M3z*M3z);B=32*Sir2/Pi/Si;d=pow(B,1.0/3.0);

22、printf(D=%.5f,d=%.5fn,D,d); for(h=1.4*D*G;h=1.6*D*G;h=h+0.01)/利用插入法找出h,bfor(b=0.25*h;b=2.5&h/b=3&h/b=4)a=0.267+0.015*(h/b-3);r=0.753-0.008*(h/b-3);Z1=FN2/(b*h)+6*G*M1z/(b*b*h)+6*G*M1x/(b*h*h); /在2-2截面利用第三强度理论求出最优h,b解Z2=FN2/(b*h)+6*G*M1z/(b*b*h);Z3=FN2/(b*h)+6*G*M1x/(b*h*h);Q2=G*M1y/(b*b*h*a);Q3=r*Q2

23、;Y2=sqrt(Z2*Z2+4*Q2*Q2);Y3=sqrt(Z3*Z3+4*Q3*Q3);if(Z1=R&(Y2-R)/R0.05&(Y3-R)/R0.05)s=h*b;if(sm)m=s;h1=h;b1=b; printf(h=%5.2fmmnb=%5.2fmmnm=%7.2fmmn,h=h1,b=b1,m); /输出所得最优h,b解 Sigma1=FFy/(h*b)+M2x*6*G/(b*h*h)+M2z*6*G/(b*b*h);if(Sigma1=(1.05*Si)printf(Sigma1=%.5fn,Sigma1);printf(D1 is safe.n);elseprintf(

24、D1 is not safe.n); /校核曲柄臂D1点强度 printf(Please input date:alfa,gaman);scanf(%f,%f,&alfa,&gama); tao1=M2y*G/(alfa*h*b*b);Sigma2=FFy/(h*b)+M2z*6*G/(h*b*b); Sigmar2=sqrt(4*tao1*tao1+Sigma2*Sigma2); if(Sigmar2=(1.05*Si)printf(Sigmar2=%.5fn,Sigmar2);printf(D2 is safe.n);elseprintf(D2 is not safe.n); /校核曲柄臂D2点强度Sigma3=FFy/(h*b)+M2x*6*G/(h*h*b); tao2=gama*tao1; Sigmar3=sqrt(4*tao2*tao2+Sigma2*Sigma3);if(Sigmar3=2.0)printf(n=%.2f=2n,ntao); /输出安全系数printf(H-H is safe.);elseprintf(H-H is not safe.);9.3 计算输出结果9.4标识符28

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 学术论文 > 毕业设计

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922