汽车转向系统说明书.doc

上传人:星星 文档编号:863257 上传时间:2023-09-26 格式:DOC 页数:44 大小:2.45MB
下载 相关 举报
汽车转向系统说明书.doc_第1页
第1页 / 共44页
汽车转向系统说明书.doc_第2页
第2页 / 共44页
汽车转向系统说明书.doc_第3页
第3页 / 共44页
汽车转向系统说明书.doc_第4页
第4页 / 共44页
汽车转向系统说明书.doc_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、 目录(3.3.3阿克曼原理12=561.1N (4-1)38图4-1循环球式转向器滚道384.1.1 循环球齿条齿扇转向器参数的选择381)转向器的主参数的选取38依王望予汽车设计P235,表7-1,循环球式转向器主参数壳选定其相应参数如下38(1) 球中心矩D=30mm38(2) 螺杆外径=29mm39(3) 螺母内径,一般要求-=(5%-10%)。固取32mm。39(4) 钢球直径d=7.144mm39(5) 滚道截面直径=(0.51-0.53)d。=3.7mm。39(6) 一个环路中钢球工作圏数w=1.539 第1章 绪论 自卸车是指通过液压或机械举升而自行卸载货物的车辆,又称翻斗车。

2、由汽车地盘、液压举升机构、货箱和取力装置等部件组成。自卸车在土木工程中,经常与挖掘机、带式输送机等工程机械联合作业,构成装、运、卸生产线,进行土方、砂石、散料的装卸运输工作。汽车转向系统和前桥是汽车的重要组成部分,对汽车行驶的安全性、高速行驶时的稳定性、操纵可靠性和乘座舒适性起着重要的作用。上个世纪末,汽车转向系统和前桥发展很快,新的结构和先进控制方法的采用,特别是引入了动力转向之后,使转向系统和前桥发生了深刻的变化。动力转向系统的应用日益广泛,在重型汽车上几乎必须配备应用。主要是为了减轻驾驶疲劳,提高操纵轻便性和稳定性,虽然带来成本高、结构复杂等问题,但由于优势明显,还是得到了汽车工业的认可

3、,得到了很快的发展。转向系统和前桥在汽车设计中占有重要的地位,这两部分设计的好坏,直接影响汽车的操纵性、稳定性及安全性。本次设计过程中,参考同类车型,根据车辆本身设计的特点,按照设计原则,从实用性、经济性的角度考虑,设计出转向总成和前桥。在合理选择各项参数、材料,优化设计出整体结构尺寸紧凑,使成本合算,与总体布置相匹配,具有广泛的通用性。 44第2章 前桥设计2.1 前桥方案的确定 转向前桥有断开式和非断开式两种。断开式前桥与独立悬架相配合,结构比较复杂但性能比较好,多用于轿车等以载人为主的高级车辆。非断开式又称整体式,它与非独立悬架配合。它的结构简单,承载能力大,由于一般载货汽车前悬架为非独

4、立悬架,与非独立悬架匹配的从动桥为非断开式转向从动桥,因此本次设计采用非断开式转向从动桥。各种车型的非断开式转向从动桥的结构型式基本相同。作为主要零件的前梁是用中碳钢或中碳合金钢的,其两端各有一呈拳形的加粗部分为安装主销的前梁拳部;为提高其抗弯强度,其较长的中间部分采用工字形断面并相对两端向下偏移一定距离,以降低发动机从而降低传动系的安装位置以及传动轴万向节的夹角。为提高其抗扭强度,两端与拳部相接的部分采用方形断面,而靠近两端使拳部与中间部分相联接的向下弯曲部分则采用两种断面逐渐过渡的形状。中间部分的两侧还要锻造出钢板弹簧支座的加宽文承面。有的汽车的转向从动桥的前梁采用组合式结构,即由其采用无

5、缝钢管的中间部分与采用模锻成形的两端拳形部分组焊而成。这种组合式前梁适于批量不太大的生产并可省去大型缎造设备。本次设计的自卸车总质量较大,前桥承受载荷较大,因此采用前一种方案。2.2前桥断面形状选择转向从动桥采用工字钢断面的前梁,可以保证其质量小而在垂向平面内的刚度大、强度高。工字形断面尺寸选用推荐值,该断面的垂直弯曲截面系数可近似取为: (2-1)式中 a工字形断面的中部尺寸。代入数据得:=0.54转向从动桥前梁拳部之高度约等于前梁工字形断面大的高度。主销上下滑动轴承的长度则取为主销直径的1.25-1.5倍。2.3转向轮定位参数的确定 为保证汽车稳定的直线行驶状态,应使转向轮具有自动回正的能

6、力。这种自动回正是靠转向轮的定位参数来实现的。定位参数有:主销后倾角、主销内倾角、车轮外倾角和前轮前束。主销后倾角可以形成回正的稳定力矩,主销内倾角也具有自动回正的作用,前轮前束减轻和消除车轮外倾角而产生的不良后果。根据经验和参考同类车型选择: 主销后倾角 主销内倾角 前轮外倾角 前轮前束A-B=20mm 主销偏离距是指主销轴线到地面的交点至车轮中心平面与地面交线间的距离。它影响车轮的转向性能,如轻便性等。偏移距过小就不轻便。对于一定的车型可用实验的方法确定a值的最小值,选a=70mm。2.4前轴的校核 (2-2)式中:静载荷的弯矩, 施加在前轴上的静载荷, -前轮轮距1986mm 两钢板弹簧

7、之间的距离 mm a=1310mm (2-3)在静载荷作用下,前轴的弯矩应力 (2-4) 图2-1 前桥受力弯矩图及断面图汽车的动载荷倍数为n,这样前轴的应力为 MPa (2-5) 取n=2.5 22.6MPaMPa 第3章 转向系设计3.1 转向系的设计要求 汽车转向系的功用:汽车转向系是用来保持或者改变汽车行驶方向的机构。在汽车转向行驶时,保证各转向轮之间有协调的转角关系。机械转向系依靠驾驶员人力转动方向盘,经转向操纵机构、转向器和转向梯形机构使转向轮偏转。有些汽车转向柱管还装有缓冲机构和转向减振器。采用动力转向的汽车还装有液压或电动助力系统,并借助此来缓解驾驶疲劳。汽车转向系应满足以下要

8、求:1、汽车转弯行驶时,全部车轮绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性;2、汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶;3、汽车在任何行驶状态下,转向轮都不得产生自振,转向盘没有摆动;4、转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应为最小;5、保证汽车有较高的机动性,具有迅速和小转弯行驶的能力;6、操纵轻便;7、转向轮碰到障碍物之后,转向轮传给转向盘的反冲力要尽可能小;8、转向器和转向传动机构的球头处,有消除应磨合而产生间隙的调整机构;9、在车祸中,当转向轴和转向盘由于车

9、架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的安全装置;10、进行运动校核,保证转向轮与转向盘转动方向一致;正确设计转向梯形机构,可以保证汽车转弯行驶时,全部车轮绕车辆瞬时转向中心旋转。转向轮的自动回正能力决定于转向轮的定位参数和转向器逆效率的大小。合理确定转向轮的定位参数,正确选择转向器的形式,可以保证汽车具有良好的自动回正能力。转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。 为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,其最小转弯半径能达到汽车轴距的22.5倍。转向操纵的轻便性通常用转向时驾驶员作用在转向盘上的切向

10、力大小和转向盘转动圈数多少两项指标来评价。 轿车 货车 机械转向 50100N 250N 动力转向 2050N 120N 轿车转向盘从左极限位置转到右极限位置的圈数不得超过2.0圈,客车则要求不超过3.0圈。3.2转向系统概论 车辆在行驶过程中,需按驾驶员的意志经常改变其行驶方向所谓汽车转向。就轮式车辆而言,实现汽车转向的方法是,驾驶员通过一套专设的机构,使汽车转向桥(一般是前桥)上的车轮(转向轮)相对于汽车纵轴线偏转一定角度。在汽车直线行驶时,转向轮也会受到路面侧向干扰力的作用,自动偏转而改变行驶方向。此时,驾驶员也可以利用转向机构使转向轮向相反的方向偏转,从而使汽车恢到直线行驶方向。这一套

11、用来改变或恢复汽车行驶方向的专设机构,即称为汽车转向系统。因此,汽车转向系统的功用是保证汽车能按照驾驶员的意志进行转向行驶。汽车转向系可按转向能源的不同分为机械转向系和动力转向系两大类。3.2.1机械转向系统机械转向系统以驾驶员的体力作为唯一的转向能源,其中所有传力件都是机械的。机械转向系统由转向操纵机构、转向器和转向传动机构三大部分组成。图3-1机械转向系的基本组成和布置图 1.转向盘 2.转向轴 3.转向万向节 4.转向传动轴 5.转向器 6.转向摇臂7.转向直拉 杆 8.转向节臂 9.左转向节10、12.梯形臂 11.转向横拉杆13.右转向节图3-1为机械转向系的基本组成和布置示意图。当

12、汽车转向时,驾驶员对转向盘1施加一个转向力矩。该力矩通过转向轴2、转向万向节3和转向传动轴4输入转向器5。经转向器放大后的力矩和减速后的运动传到转向摇臂6,再经过转向直拉杆7传给固定于左转向节9上的转向节臂8,使左转向节和它所支撑的左转向轮偏转。为使右转向节13及其支撑的右转向轮随之偏转相应的角度,还设置了转向梯形。转向梯形有固定在左、右转向节上的梯形臂10、12和两端与梯形臂做球铰连接的转向横拉杆11组成。 图3-2与独立悬架搭配的转向系图3-2也是机械式转向系,与图3-1不同的是它是与独立悬架条式转向搭配的转向系。当需要转向时,驾驶员对转向盘施加一个转向力矩,该力矩通过转向轴、转向轴万向节

13、和转向传动轴输入转向器,转向轴的转动经转向器后变为齿条的左右移动。转向横拉杆一端与齿条相连,另一端通过球铰和固定在转向节上的转向节臂连接。齿条左右移动,带动连接在其上的横拉杆左右运动,通过转向节臂拉动转向节使转向轮转动。从转向盘到转向传动轴这一系列部件和零件均属于转向操纵机构。转向梯形到转向节臂这一系列部件和零件,均属于转向传动机构。目前,许多国内、外生产的新车型在转向操纵机构中采用了万向传动装置(转向万向节和转向传动轴)。这有助于转向盘和转向器等部件和组件的通用化和系列化。只要适当改变转向万向传动装置的几何参数,便可满足各种车型的总布置要求。即使在转向盘与转向器同轴线的情况下,其间也可采用

14、万向传动装置,以补偿由于部件在车上的安装误差和安装基体(驾驶室、车架)的变形所造成的二者轴线实际上的不重合。转向盘在驾驶室安放的位置与各国交通法规规定车辆靠道路左侧还是右侧通行有关。包括我国在内的大多数国家规定车辆右侧通行,相应的应将转向盘安置在驾驶室左侧。这样,驾驶员在左方视野较宽阔,有利于两车安全交会。相反,在一些规定车辆右行的国家,转向盘则安置在驾驶室右侧。3.2.2动力转向系 动力转向系是兼用驾驶员和发动机动力为转向能源的转向系。在正常情况下,汽车所需要的能量,只有小部分由驾驶员提供,而大部分是由发动机通过转向加力装置提供的。但在转向加力装置失效时,一般还应当能由驾驶员独立承担转向任务

15、。因此,动力转向系是在机械转向系的基础上加设一套转向加力装置而形成的。 图3-3液压动力转向系的组成和液压转向加力装置布置示意图 1. 方向盘 2.转向轴 3.转向中间轴 4.转向油管 5.转向油泵 6.转向油罐 7.转向节8.转向横拉杆 9.转向摇臂 10.整体式转向器 11.转向直拉杆 12.转向动力缸 图3-3为一种液压动力转向系的组成和液压转向加力装置的管路布置示意图,其中属于转向加力装置的部件是:转向油罐、转向液压泵,转向控制阀和转向动力缸。当驾驶员逆时针转动转向盘时,转向摇臂带动转向直拉杆前移。直拉杆的拉力作用于转向节臂,并依次传到梯形臂和转向横拉杆使之右移。与此同时,转向直拉杆还

16、带动转向控制阀中的转阀,使转向动力缸的右腔接通液面压力为零的转向油罐。转向液压泵的高压油进入转向动力缸的左腔,于是转向动力缸的活塞上受到向右的液压作用力便经推杆施加在转向横拉杆上,也使之右移。这样,驾驶员施于转向盘上很小的力矩,便可克服地面作用于转向轮上的转向阻力矩。随着最近汽车发动机马力的增大和扁平轮胎的普遍使用,使车重和转向力矩都加大了,因此动力转向机构越来越普及。动力转向系统已成为一些轿车的标准配置,全世界约有一半的轿车采用动力转向。值得注意的是,转向助力不应是不变的,因为在高速行驶时,轮胎的横向阻力小,转向盘变得轻飘,很难捕捉路面的感觉,也容易造成转向过于易控制。所以在高速时要适当减低

17、动力,但这种变化必须平顺过度,灵敏而使汽车易于控制。a、液压式动力转向装置液压式动力转向装置质量轻,结构紧凑,利于改善转向操作感觉,但液体流量的增加会加重液压泵的负荷,需要保持怠速旋转的机构。b、电动式动力转向装置电动式动力转向装置是最新的转向装置,由于它节能,故受到汽车行业的重视。它是利用蓄电池实现电动机转动产生推力。由于不直接使用发动机的动力,所以大大降低了发动机的功率损失,且不需要液压管路,便于安装。尤其利于后轮驱动的汽车,但目前电动式动力转向装置所得到的助力效果还比不上液压式,所以只限用于前轴载荷小的后轮驱动汽车上。c、电动液压式动力转向装置即由电机驱动转向助力泵并由计算机控制的方式,

18、它集液压式和电动式的优点于一体。因为是计算机控制,所以转向助力泵不必一直工作,减小了发动机的功率损失。这种方式结构紧凑,便于安装布置,但液压系统产生的动力不会太大,所以只适用于小排量汽车。3.2.3四轮转向系四轮转向系(4WS)是把后轮与前轮一起转向,是一种提高车辆机动性和通过性的关键技术。把后轮与前轮同时反相位转向,可以减少车辆转向时的横摆运动,改善高速行驶时的稳定性。把后轮与前轮反相位偏转,能够改善车辆低速行驶时的操纵性,并提高快速转向性。目前,安装在批量生产车辆上的四轮转向控制系统,可以分为以下4类: 1、横向加速度车速感应性2、前轮转角车速感应性3、前轮转角感应性4、前轮转角比例车速感

19、3.3 转向性能与阿克曼几何学3.3.1转向系总体结构参数:轴距L=3800+1350mm;前轮轮距B=1986mm;最小转弯半径Rmin=8m。3.3.2转向桥的内、外轮转角无论选择哪一种转向梯形方案,必须在正确选择转向梯形参数的同时,做到汽车转弯行驶时,保证全部车轮绕一个瞬时转向中心行驶,使在不同圆周上运动的车轮,作无滑动的纯滚动运动。同时转向轮在最大转角情况下,获得最小转弯半径能满足总体布置要求。因此,汽车的内、外轮有不同的转角(如图3-4)。图3-4内外轮转角关系图(3.3.3阿克曼原理 两轴汽车在低速转弯行驶时 ,可忽略离心力的影响,假设轮胎是刚性的,忽略轮胎侧偏特性影响的时候,此时

20、若各车轮绕同一瞬时转向中心转弯行驶,则两转向前轮轴线的延长线交在后轴的延长线上,这几何关系叫做阿克曼原理。 汽车只用前轮转向时,为了满足上述条件,必须符合下述关系式 (3-1)式中:转向轮外轮转角;转向轮内轮转角;K两主销轴线与地面交点之间距离即为主销节距; L汽车轴距。汽车转向时若能满足上述条件,则车轮作纯滚动运动。现有汽车转向梯形机构,对上述条件不能在整个转向范围得到满足,只是近似的使它得到保证。当内、外轮转角差别不大时,即=的条件下,转向梯形为平行四边形,称之为平行几何学。阿克曼几何学和平行几何学的内、外轮转角关系理论曲线在图2-5上位于阿克曼几何学和平行几何学的理论曲线之间变化。3.3

21、.4最小转弯半径最小转弯半径是指转向轮转角在最大位置条件下,汽车低速行驶时前外转向轮的接地中心到车辆转向中心O点之间的距离。汽车最小转弯半径与汽车前外转向轮最大转角、轴距L、两主销延长线到地面交点的距离K有关。在转向过程中,L、K保持不变,只有是变化的,所以内轮应有足够大的转角,以保证获得给定的最小转弯半径。计算最小转弯半径的公式如下: (3-2)因为梯形机构不能保证内、外轮转角和与理论值一致,故实际的最小转弯半径与上述结果不完全符合。在给定最小转弯半径条件下,可以用下式计算出转向外轮应达到的最大转角: (3-3)由给定的最小转弯半径,同时为了提高汽车的机动性,设定:=8m 可得: = = =

22、 3.4 转向系方案分析及确定3.4.1机械式转向器特点机械式转向器结构特点可分为: 齿轮齿条式转向器、循环球式转向器、蜗杆滚轮式转向器、蜗杆指销式转向器等。 图3-5齿轮齿条式转向器(1) 齿轮齿条式齿轮齿条式转向器的主要优点是:结构简单、紧凑,客体采用铝合金或镁合金压铸而成,转向器的质量比较小;传动效率高达90%;齿轮齿条之间因磨损出现间隙以后,利用装在齿条背部、靠近主动小齿轮处的压力可以调节的弹簧,可自动消除齿间间隙;转向器占用体积小;没有转向摇臂和转向直拉杆,所以转向轮转角可以增大;制造成本低。齿轮齿条式转向器的主要缺点是:逆效率高(60%70%)。因此,汽车在不平路面上行驶时,发生在

23、转向轮与路面之间的冲击力,大部分能传至转向盘,使驾驶员精神紧张,难以准确控制方向。 图3-6齿轮齿条式转向器的四种形式根据输入齿轮位置和输出特点不同,齿轮齿条式转向器有四种形式:中间输入,两端输也(图3-6a);侧面输入,两端输出(图3-6b);侧面输入,中间输出(图3-6c);侧面输入,一端输出(图3-6d) 采用侧面输入、中间输出方案时,于齿条固连的左右拉杆延伸到接近汽车纵向对称平面附近。由于拉杆长度增加,车轮上、下跳动时位杆摆角减小,有利于减少车轮上、下跳动时转向系与悬架系的运动干涉。而采用两侧输出方案时,容易与悬架系统导向机构产生运动干涉。侧面输入、一端输出的齿轮齿条式转向器,常用在平

24、头微型货车上。采用斜齿圆柱齿轮与斜齿齿条啮合的齿轮齿条式转向器,重合度增加,运转平稳,冲击与工作噪声均下降。齿条断面形状有圆形、V形和Y形三种。圆形断面齿条制作工艺比较简单。V形和Y形断面齿条与圆形断面比较,消耗的材料少,故质量小。根据齿轮齿条式转向器和转向梯形相对前轴位置的不同,在汽车上有四种布置形式:转向器位于前轴后方,后置梯形;转向器位于前轴后方,前置梯形;转向器位于前轴前方,后置梯形;转向器位于前轴前方,前置梯形。如图3-7.图3-7齿轮齿条式转向器的四种布置形式齿轮齿条式转向器广泛应用于微型、普通级、中级和中高级轿车上。装载量不大、前轮采用独立悬架的货车和客车也用齿轮齿条式转向器。(

25、2)循环球式转向器 摩擦转变成滚动摩擦,因而传动效率可达到75%85%;转向器的传动比可以变化;工作平稳可靠;齿条和齿扇之间的间隙调整容易进行;适合用来做整体式动力转向器。 图3-8循环球式转向器循环球式转向器的主要缺点是:逆效率高,结构复杂,制造困难,制造精度要求高。循环球式转向器主要应用于商用车上。(3)蜗杆滚轮式、蜗杆指销式蜗杆滚轮式转向器由蜗杆和滚轮啮合而构成。主要优点是:结构简单;制造容易;强度比较高、工作可靠、寿命长;逆效率低。主要缺点是:正效率低;调整啮合间隙比较困难;传动比不能变化。 蜗杆指销式转向器有固定销式和旋转销式两种形式。根据销子数量不同,又有单销和双销之分。蜗杆指销式

26、转向器的优点是:传动比可以做成不变的或者变化的;工作面间隙调整容易。固定销式转向器的结构简单、制造容易。但销子的工作部位磨损快、工作效率低。旋转销式转向器的效率高、磨损慢,但结构复杂。要求摇臂轴有较大的转角时,应采用双销式结构。双销式转向器的结构复杂、尺寸和质量大,并且对两主销间的位置精度、螺纹槽的形状及尺寸精度等要求高。此外,传动比的变化特性和传动间隙特性的变化受限制。综合考虑,根据本次设计要求及转向器的性能参数等原因。决定采用齿轮齿条式转向器。3.4.2 转向系主要性能参数的确定转向系主要性能参数有转向系效率、转向系角传动比与力传动比、转向系传动副的传动间隙特性,转向系的刚度以及转向盘的总

27、转动圈数。1转向器的效率 功率从转向轴输入,经转向摇臂轴输出所求得的效率称为转向器的正效率,用符号+表示,;反之称为逆效率,用符号表示。正效率+计算公式: +=(-)/ (3-4)逆效率-计算公式: =(-)/ 式中:P1为作用在转向轴上的功率; P2为转向器中的摩擦损失功率; P3为作用在转向摇臂轴上的功率。 正效率高,转向轻便;但转向器也应具有一定逆效率,以保证转向轮和转向盘的自动回正能力。但为了减小经转向系传至转向盘上的路面冲击力,防止打手,又要求此逆效率尽量低。 1转向器的正效率+ 影响转向器正效率的因素有转向器的类型、结构特点、结构参数和制造质量等。 (1)转向器类型、结构特点与效率

28、 在齿轮齿条、循环球、蜗杆指销、蜗杆滚轮式四种转向器中,齿轮齿条式、循环球式转向器的正效率比较高,而蜗杆指销式特别是固定销和蜗杆滚轮式转向器的正效率要明显的低些。同一类型转向器,因结构不同效率也不一样。如蜗杆滚轮式转向器的滚轮与支持轴之间的轴承可以选用滚针轴承、圆锥滚子轴承和球轴承。选用滚针轴承时,除滚轮与滚针之间有摩擦损失外,滚轮侧翼与垫片之间还存在滑动摩擦损失,故这种轴向器的效率+仅有54%。另外两种结构的转向器正效率分别为70%和75%。转向摇臂轴的轴承采用滚针轴承比采用滑动轴承可使正或逆效率提高约10%。因设计转向系为实现满载质量为200020Kg的自卸车转向, 应当选用一种正效率高的

29、转向器,以实现转向系操纵轻便。自卸车常选用循环球式转向器可一实现转向系转向轻便并具有一定逆效率的使用要求。 (2)循环球式转向器的结构参数及效率 如果忽略轴承和其经地方的摩擦损失,只考虑啮合副的摩擦损失,对于蜗杆类转向器,其效率可用下式计算: (3-5)式中:a0为蜗杆(或螺杆)的螺线导程角; 为摩擦角,=arctanf;f为磨擦因数。根据逆效率不同,转向器有可逆式、极限可逆式和不可逆式之分。路面作用在车轮上的侧向力,经过转向系可大部分传递到转向盘,这种逆效率较高的转向器属于可逆式。它能保证转向轮和转向盘自动回正,既可以减轻驾驶员的疲劳,又可以提高行驶安全性。但是,在不平路面上行驶时,传至转向

30、盘上的车轮冲击力,易使驾驶员疲劳,影响安全行驾驶。查汽车拖拉机设计手册知f=0.015。由汽车设计知由于会随转向器螺杆导程增大而增大,固导程角不能选得太大。但导程角不能选得太小,一旦导程角小于摩擦角,转向系将反行程自锁,转向器逆效率就为零,驾驶员完全失去路感。的取值范围为,本设计中取为。将f=0.015,带入(3-5),得 += 90.1% = 30.1% 3.5转向系的角传动比与力传动比 3.5.1角传动比 转向盘的转角增量与同侧转向节转角的相应增量之比,称为转向系的角传动比,转向盘转角增量与转向摇臂轴转角相应的增量之比,称为转向器的角传动比。转向摇臂轴的转角增量与同侧转向节的转角相应增量之

31、比,称为转向传动机构的角传动比,它们之间的关系为: (3-6) (3-7) (3-8)式中: 转向系的角传动比;转向器的角传动比; 转向传动机构的角传动比;转向盘的转角增量;转向摇臂轴的转角增量;同侧转向节转角增量。初选择,转向系的角传动比=20,转向传动机构的角传动比约为1,固转向器的角传动比为=20。3.5.2转向系力传动比 转向传动机构的力传动比等于转向轮的转向阻力矩与转向摇臂的力矩T的比值。与转向传动机构的布置形式及其杆件所处的转向位置有关。 (3-9)转向系的力传动比等于地面作用在轮胎上的阻力与作用在方向盘上的阻力之比。 (3-10)作用在方向盘上的切向力可以用下式表示: (3-11

32、)式中:作用在方向盘上的力矩; 方向盘的直径。轮胎给地面的阻力可以用下式表示: (3-12)综合上述三式可得: (3-13)r为主销偏移距,常取为0.4-0.6倍的轮胎断面宽度。参考国内外同类车型,轮胎选用普通断面子午线轮胎,规格为11.00-20,11.00R20。R值取的太大,造成回正力矩大,操纵时转向沉重;r值取得小,回正力矩会降低,不能保证汽车稳定的回正转向性能。综合考虑,r取为0.4倍轮胎断面宽度。轮胎断面宽度为293mm,r=117.2mm方向盘直径根据车型不同JB4505-86转向盘尺寸标准中选取: =500mm;如果忽略摩擦损失,则: (3-14)在前面已经初选了: =20所以

33、可得转向系力传动比: =42.663.5.3转向系传动间隙转向系的传动间隙主要取决于转向器的间隙特性,转向器的传动间隙随转向转角的改变而改变。它因经常工作而很容易磨损,产生的间隙会使转向轮偏转,破坏汽车行驶稳定性,并使转向盘的自由行程增大。要求转向盘的最大自由行程从中间位置向左右两端各不得超过15。因此要求上述出现的间隙能够自动消除,对于齿轮齿条式转向器,由于其齿条背部有压紧弹簧,所以出现间隙后,可以实现自动消除。3.5.4方向盘的总转动圈数转向盘从一个极端位置转到另一个极端位置时所转过的圈数称为转向盘的总转动圈数。它与转向轮最大转角和转向系的角传动比有关,并影响转向轻便性和灵敏性。轿车和微型

34、车的总转动圈数较少,一般约为3.6圈以内,货车在6.0圈。粗略校验转向盘总转动圈数:= =4.1转向盘转角在所要求的范围内。3.6 转向系的校核设计载荷计算为了行驶安全,转向系的各分总承和零部件必须有足够的强度。校核转向系零件的强度,首先要确定作用在各零部件上的力和力矩。影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎气压等。转动转向轮要克服的阻力包括转向轮绕主销转动的原地转向阻力矩、轮胎变形阻力和转向系中各零部件的摩擦阻力等。精确的计算出这些力是很困难的。为此推荐用足够精确的半经验公式来计算汽车在沥青或混凝土路面上的原地转向阻力矩Mr(N/mm)。 (3-15)式中:f轮胎和地面间的滑动摩

35、擦因数,一般取0.7; G1转向轴负荷(N); P轮胎气压(MPa)。由总体设计给定轮胎参数为: G1=0.48G=48209.8=47236N; P=0.9Mpa代入数据可得: =2525.02;作用在方向盘上的切向力为:为转向摇臂长,取为150mm;为转向节臂长,取为157mm. (3-16) =561.1N给定的汽车,用上述公式计算出来的是最大值,该力是在静止状态下计算出来的,对于装动力转向器的汽车,要求原地转向时此力超过250N。所以本次设计加装动力装置。3.7 转向传动机构及优化设计3.7.1转向操纵机构转向操纵机构由转向盘、转向轴、转向柱管等组成。如3-10所示。 图3-9转向盘

36、图3-10 转向盘1.轮缘 2.轮辐3.轮毂转向盘由轮缘1、轮辐2和轮毂3组成。轮辐一般为三根辐条或四根辐条,也有用两根辐条的。转向盘轮毂孔具有细牙内花键,借此与转向轴相连。转向盘内部是由成形的金属骨架构成。骨架外面一般包有柔软的合成橡胶或树脂,也有包皮革的,这样可有良好的手感,而且还可以防止手心出汗时握转向盘打滑。在汽车发生碰撞时,从安全性考虑,不仅要求转向盘应具有柔软的外表皮,可起缓冲作用,而且还要求转向盘在撞车时,其骨架能产生变形,以吸收冲击能量,减轻驾驶员受伤程度。现在的大多数轿车上都装有车速控制开关和撞车时保护驾驶员的安全气囊装置。转向轴是连接转向盘和转向器的传动件,并传递它们之间的

37、转矩。转向柱管安装在车身上,支撑着转向盘。转向轴从转向柱管中穿过,支撑在柱管内的轴承和衬套上。图3-11转向柱管缓冲装置在汽车发生严重的交通事故中,方向盘往往成为直接“杀手”。一旦汽车前端被碰撞,发动机舱等后移,方向盘也随之后移,方向盘与驾驶座椅之间的空间突然缩小,驾驶员夹在中间而受到伤害。为了尽量减少这种伤害发生,汽车设计者从方向盘的后移距离和角度变化入手,使得汽车转向系统除了能保证转向性能外,还能使驾驶员在汽车发生碰撞时受到的伤害减低到最小。与此相关的就是汽车吸能方向管柱技术的出现。图3-12 转向传动轴的吸能装置示意图图3-12所示为桑塔纳轿车转向轴的吸能装置示意图。转向轴分为上、下两段

38、,中间用柔性联轴器连接。联轴器的上、下凸缘盘靠两个销子与销孔扣合在一起。销子通过衬套与销孔配合。当发生猛烈撞车时,将引起车身、车架严重变形,导致转向轴,转向盘等部件后移。与此同时,在惯性作用下驾驶员人体向前冲,致使转向轴上的上,下凸缘盘的销子与销孔脱开,从而缓和了冲击,吸收了冲击能量,有效地减轻了驾驶员受伤的程度。吸能转向管柱的变形支架是通过金属的变形来吸收碰撞能量的。变形支架与下转向管柱相连。它使用拉脱安全锁,里面的塑性材料受到大夫在冲击被剪切断开会使下转向管柱和转向轴从支架中脱出沿轴向移动,另上转向管柱和转向轴下移。变形条与变形支架相似,它也是靠金属的变形来吸收碰撞能量的。与变形支架不同,

39、它占用的空间较小。一般变形条一端与车身相连,另一端固定在转向管柱上。碰撞时冲击力达到一定值的时候。转向管柱产生位移。变形条发生变形,从而达到吸能效果。图3-13所示为网络状转向柱管系能装置示意图,网络状转向柱管的网格部分被压缩而产生塑性变形,吸收冲击能量,以减轻对人体的伤害。 图3-13转向柱管吸能装置示意图3.7.2转向传动机构(1)、非独立悬架配用的转向传动机构与非独立悬架配用的转向传动机构(图3-14)主要包括转向摇臂2、转向直拉杆3、转向节臂4和转向梯形。在前桥仅为转向桥的情况下,由转向横拉杆6和左、右梯形臂5组成的转向梯形一般布置在前桥之后,如图3-14a所示。图3-141.转向器

40、2.转向摇臂 3.转向直拉杆 4.转向节臂 5.梯形臂 6.转向横拉杆当转向轮处于与汽车直线行驶相应的中立位置时,梯形臂5与横拉杆6在与道路与平行的平面(水平面)内的夹角90。在发动机位置较低或转向桥兼充驱动桥的情况下,为避免运动干涉,往往将转向梯形布置在前桥之前,此时上述交角90,如图3-15(b)所示。若转向摇臂不是在汽车总线平面内前后摆动,而是在与道路平行的平面内左右摇动,则可以将转向直拉杆3横置,并借球头销直接带动转向横拉杆6,从而推使两侧梯形臂转动。(2)、独立悬架配用的转向传动机构图3-15转向传动机构布置示意图1. 转向摇臂 2.转向直拉杆 3.左转向横拉杆 4.右转向横拉杆5.

41、梯形臂 6.右梯形臂 7.摇杆 8.悬架左摆臂 9.悬架右摆臂 10.齿轮齿条式转向器当转向轮独立悬挂时,每个转向轮都需要相对于车架作独立运动,因而转向桥必须是断开式的。与此相应,转向传动机构中的转向梯形也必须是断开式的,分成两段或三段(图3-15),并且由于在平行于路面的平面中摆动的转向摇臂直接带动或通过转向直拉杆带动。转向直拉杆的作用是将转向摇臂传来的力和运动传给转向梯形臂(或转向节臂)。它所受的力既有拉力、也有压力,因此直拉杆都是采用优质特种钢材制造的,以保证工作可靠。在转向轮偏转或因悬架弹性变形而相对于车架跳动时,转向直拉杆与转向摇臂及转向节臂的相对运动都是空间运动,为了不发生运动干涉,上述三者间的连接都采用球销。综上所诉具体优缺点及应用,本设计选用整体式车桥只能配用整体式转向梯形。由于前桥仅做为转向桥,固选用后置梯形。3.8转向梯形机构的优化设计 图3-16 车辆的转向及转向梯形示意图3.8.1转向梯形实际外导向轮转角函数如图3-16所示,当内侧转向轮的实际转角为时,通过转向梯形所获得的外侧转向轮的实际转角为。根据前述的基本假设,则与的关系如下:在中,由余弦定理得: (3-17)在中,由余弦定理得: (3-18)由2-17,2-18联立得: (3-19)又由于 (3-20) (3-21)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 毕业设计

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922