电力变压器故障分析与诊断.doc

上传人:精*** 文档编号:860621 上传时间:2023-09-24 格式:DOC 页数:58 大小:352.20KB
下载 相关 举报
电力变压器故障分析与诊断.doc_第1页
第1页 / 共58页
电力变压器故障分析与诊断.doc_第2页
第2页 / 共58页
电力变压器故障分析与诊断.doc_第3页
第3页 / 共58页
电力变压器故障分析与诊断.doc_第4页
第4页 / 共58页
电力变压器故障分析与诊断.doc_第5页
第5页 / 共58页
点击查看更多>>
资源描述

1、目录第1级1第2级2第2级3第1级4第2级5第2级6电力变压器故障分析与诊断摘要: 电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证,必须最大限度地防止和减少变压器故障和事故的发生。但由于变压器长期运行,故障和事故总不可能完全避免,且引发故障和事故又出于众多方面的原因。如外力的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中遗留的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化及预期寿命的影响,已成为发生故障的主要因素。同时,部分工作人员

2、业务素质不高、技术水平不够或违章作业等,都会造成事故或导致事故的扩大,从而危及电力系统的安全运行。关键词: 电力变压器故障电力系统分析诊断第一章 变压器故障油浸电力变压器的故障常被分为内部故障和外部故障两种。内部故障为变压器油箱内发生的各种故障,其主要类型有:各相绕组之间发生的相间短路、绕组的线匝之间发生的匝间短路、绕组或引出线通过外壳发生的接地故障等。外部故障为变压器油箱外部绝缘套管及其引出线上发生的各种故障,其主要类型有:绝缘套管闪络或破碎而发生的接地 由于变压器故障涉及面较广,具体类型的划分方式较多,如从回路划分主要有电路故障、磁路故障和油路故障。若从变压器的主体结构划分,可分为绕组故障

3、、铁心故障、油质故障和附件故障。同时习惯上对变压器故障的类型一般是根据常见的故障易发区位划分,如绝缘故障、铁心故障、分接开关故障等。而对变压器本身影响最严重、目前发生机率最高的又是变压器出口短路故障,同时还存在变压器渗漏故障、油流带电故障、保护误动故障等等。所有这些不同类型的故障,有的可能反映的是热故障,有的可能反映的是电故障,有的可能既反映过热故障同时又存在放电故障,而变压器渗漏故障在一般情况下可能不存在热或电故障的特征。 因此,很难以某一范畴规范划分变压器故障的类型,本书采用了比较普遍和常见的变压器短路故障、放电故障、绝缘故障、铁心故障、分接开关故障、渗漏油气故障、油流带电故障、保护误动故

4、障等八个方面,按各自故障的成因、影响、判断方法及应采取的相应技术措施等,分别进行描述。第一节短路故障 变压器短路故障主要指变压器出口短路,以及内部引线或绕组间对地短路、及相与相之间发生的短路而导致的故障。 变压器正常运行中由于受出口短路故障的影响,遭受损坏的情况较为严重。据有关资料统计,近年来,一些地区110kV及以上电压等级的变压器遭受短路故障电流冲击直接导致损坏的事故,约占全部事故的50以上,与前几年统计相比呈大幅度上升的趋势。这类故障的案例很多,特别是变压器低压出口短路时形成的故障一般要更换绕组,严重时可能要更换全部绕组,从而造成十分严重的后果和损失,因此,尤应引起足够的重视。 出口短路

5、对变压器的影响,主要包括以下两个方面。1短路电流引起绝缘过热故障 变压器突发短路时,其高、低压绕组可能同时通过为额定值数十倍的短路电流,它将产生很大的热量,使变压器严重发热。当变压器承受短路电流的能力不够,热稳定性差,会使变压器绝缘材料严重受损,而形成变压器击穿及损毁事故。 变压器发生出口短路时,短路电流的绝对值表达式为 (1-1)式中(n)短路类型的角标; 比例系数,其值与短路类型有关;所求短路类型的正序电流绝对值。 不同类型短路的正序电流绝对值表达式为 (1-2)式中E故障前相电压 Xl等值正序阻抗附加阻抗。变压器的出口短路主要包括:三相短路、两相短路、单相接地短路和两相接地短路等几种类型

6、。据资料统计表明,在中性点接地系统中,单相接地短路约占全部短路故障的65,两相短路约占1015,两相接地短路约占15一20,三相短路约占5,其中以三相短路时的短路电流值最大,国标GBl094585电力变压器 第5部分 承受短路的能力中就是以三相短路电流为依据的。忽略系统阻抗对短路电流的影响,则三相短路表达式为 (1-3)式中Idt(3)三相短路电流; U变压器接入系统的额定电压 Zt变压器短路阻抗; IN变压器额定电流; UN变压器短路电压百分数。 对220kV三绕组变压罪而言,高压对中、低压的短路阻抗一般在10一30之间,中压对低压的短路阻抗一般在10以下,因此变压器发生短路故障时,强大的短

7、路电流致使变压器绝缘材料受热损坏。 2短路电动力引起绕组变形故障 变压器受短路冲击时,如果短路电流小,继电保护正确动作,绕组变形将是轻微的;如果短路电流大,继电保护延时动作甚至拒动,变形将会很严重,甚至造成绕组损坏。对于轻微的变形,如果不及时检修,恢复垫块位置,紧固绕组的压钉及铁轭的拉板、拉杆,加强引线的夹紧力,在多次短路冲击后,由于累积效应也会使变压器损坏。因此诊断绕组变形程度、制订合理的变压器检修周期是提高变压器抗短路能力的一项重要措施。 绕组受力状态如图11、图12所示。由于绕组中漏磁中的存在,载流导线在漏磁作用下受到电动力的作用,特别是在绕组突然短路时,电动力最严重。漏磁通常可分解为纵

8、轴分量F1和横轴分量F2,纵轴磁场F1使绕组产生辐向力,而横轴磁场F2使绕组受轴向力。轴向力使整个绕组受到张力P1,在导线中产生拉伸应力。而内绕组受到压缩力P2,导线受到挤压应力。 图11变压器绕组漏磁及受力示意图 图12变压器绕组受力分析图 轴向力的产生分为两部分,一部分是由于绕组端部漏磁弯曲部分的辐向分量与载流导体作用而产生。它使内、外绕组都受压力,由于绕组端部磁场B最大因而压力也最大,但中部几乎为零,绕组的另一端力的方向改变。轴向力的另一部分是由于内外安匝不平衡所产生的辐向漏磁与载流导体作用而产生,该力使内绕组受压,外绕组受拉;安匝不平衡越大,该轴向力也越大。 因此,变压器绕组在出口短路

9、时,将承受很大的轴向和辐向电动力。轴向电动力使绕组向中间压缩,这种由电动力产生的机械应力,可能影响绕组匝间绝缘,对绕组的匝间绝缘造成损伤;而辐向电动力使绕组向外扩张,可能失去稳定性,造成相间绝缘损坏。电动力过大,严重时可能造成绕组扭曲变形或导线断裂。 对于由于变压器出口短路电动力造成的影响,判断主变压器绕组是否变形,过去只采取吊罩检查的方法,目前一些单位采用绕组变形测试仪进行分析判断,取得了一些现场经验,如有些地区选用TDT1型变压器绕组变形测试仪进行现场测试检查,通过对主变压器的高、中、低压三相的九个绕组分别施加l0kHz至lkHz高频脉冲,由计算机记录脉冲波形曲线并储存。通过彩色喷墨打印,

10、将波形绘制出图,显示正常波形与故障后波形变化的对比和分析,试验人员根据该仪器特有的频率和波形,能比较科学地准确判断主变压器绕组变形情况。 对于变压器的热稳定及动稳定,在给定的条件下,仍以设计计算值为检验的依据,但计算值与实际值究竟有无误差,尚缺少研究与分析,一般情况下是以设计值大于变压器实际承受能力为准的。目前逐步开展的变压器突发短路试验,将为检验设计、工艺水平提供重要的依据。变压器低压侧发生短路时,所承受的短路电流最大,而低压绕组的结构一般采用圆筒式或螺旋式多股导线并绕,为了提高绕组的动稳定能力,绕组内多采用绝缘纸筒支撑,但有些厂家仅考虑变压器的散热能力,对于其动稳定,则只要计算值能够满足要

11、求,便将支撑取消,于是当变压器遭受出口短路时,由于动稳定能力不足,而使绕组变形甚至损坏。 3绕组变形的特点 通过检查发生故障或事故的变压器进行和事后分析,发现电力变压器绕组变形是诱发多种故障和事故的直接原因。一旦变压器绕组已严重变形而未被诊断出来仍继续运行,则极有可能导致事故的发生,轻者造成停电,重者将可能烧毁变压器。致使绕组变形的原因,主要是绕组机械结构强度不足、绕制工艺粗糙、承受正常容许的短路电流冲击能力和外部机械冲击能力差。因此变压器绕组变形主要是受到内部电动力和外部机械力的影响,而电动力的影响最为突出,如变压器出口短路形成的短路冲击电流及产生的电动力将使绕组扭曲、变形甚至崩溃。 (1)

12、受电动力影响的变形。 1)高压绕组处于外层,受轴向拉伸应力和辐向扩张应力,使绕组端部压钉松动、垫块飞出,严重时,铁轭夹件、拉板、紧固钢带都会弯曲变形,绕组松弛后使其高度增加。 2)中、低压绕组的位置处于内柱或中间时,常受到轴向和辐向压缩力的影响,使绕组端部紧固压钉松动,垫块位移;匝间垫块位移,撑条倾斜,线饼在辐向上呈多边形扭曲。若变形较轻,如35kv线饼外圆无变形,而内圆周有扭曲,在辐向上向内突出,在绕组内衬是软纸筒时这种变形特别明显。如果变压器受短路冲击时,继电保护延时动作超过2s,变形更加严重,线饼会有较大面积的内凹、上翘现象。测量整个绕组时往往高度降低,如果变压器继续投运,变压器箱体振动

13、将明显增大。 3)绕组分接区、纠接区线饼变形。这是由于分接区和纠接区(一般在绕组首端)安匝不平衡,产生横向漏磁场,使短路时线饼受到的电动力比常区要大得多,所以易产生变形和损坏。特别是分接区线饼,受到有载分接开关造成的分接段短路故障时,绕组会变形成波浪状,而影响绝缘和油道的通畅。 4)绕组引线位移扭曲。这是变压器出口短路故障后常发生的情况,由于受电动力的影响,破坏了绕组引线布置的绝缘距离。如引线离箱壁距离太近,会造成放电,引线间距离太近,因摩擦而使绝缘受损,会形成潜伏性故障,并可能发展成短路事故。 (2)受机械力影响的变形。 变压器绕组整体位移变形。这种变形主要是在运输途中,受到运输车辆的急刹车

14、或运输船舶撞击晃动所致。据有关报道,变压器器身受到大于3g(g为重力加速度)重力加速的冲击,将可能使线圈整体在辐向上向一个方向明显位移。 4技术改进和降低短路事故的措施 基于上述,为防止绕组变形,提高机械强度,降低短路事故率,一些制造厂家和电力用户提出并采取了如下技术改进措施及减少短路事故的措施。(1)技术改进措施。1)电磁计算方面。在保证性能指标、温升限值的前提下,综合考虑短路时的动态过程。从保证绕组稳定性出发,合理选择撑条数、导线宽厚比及导线使用应力的控制值,在进行安匝平衡排列时根据额定分接和各级限分接情况整体优化,尽量减小不平衡安匝。考虑到作用在内绕组上的轴向内力约为外绕组的两倍,因此尽

15、可能使作用在内绕组上的轴向外力方向与轴向力的方向相反。 2)绕组结构方面。绕组是产生电动力又直接承受电动力的结构部件,要保证绕组在短路时的稳定性,就要针对其受力情况,使绕组在各个方向有牢固的支撑。具体做法如在内绕组内侧设置硬绝缘筒,绕组外侧设置外撑条,并保证外撑条可靠地压在线段上。对单螺旋低压绕组首末端均端平一匝以减少端部漏磁场畸变。对等效轴向电流大的低压和调压绕组,针对其相应的电动力,采取特殊措施固定绕组出头,并在出头位置和换位处采用适形的垫块,以保证绕组稳定性。 3)器身结构方面。器身绝缘是电动力传递的中介,要保证在电动力作用下,各方向均有牢固的支撑和减小相关部件受力时的压强。在设计时采用

16、整体相套装结构,内绕组硬绝缘筒与铁心柱间用撑板撑紧以保证内绕组上承受的压应力均匀传递到铁心柱上;合理布置压钉位置和选择压钉数量,并设计副压板,以减小压钉作用到绝缘压板上的压强和压板的剪切应力。 4)铁心结构方面。轴向电动力最终作用在铁心框架结构上。如果铁心固定框架出现局部结构失稳和变形,将导致绕组失稳而变形损坏。因此,设计铁心各部分结构件时,强度要留有充分的裕度,各部件间尽量采用无间隙配合和互锁结构,使变压器器身成为个坚固的整体。 5)工艺控制和工艺手段。对一些关键工序,如垫块预处理、绕组绕制、绕组压装、相套装、器身装配时预压力控制等方面,进行严格的工艺控制,以保证设计要求。 按上述措施构思设

17、计生产的一台315MVA、110kV双绕组有载调压电力变压器,在国家变压器质检中心强电流试验室一次通过短路试验,试验前后最大的电抗差仅03,取得了显著的效果。 (2)减少短路事故的措施。 1)优化选型要求。选型应选用能顺利通过短路试验的变压器并合理确定变压器的容量,合理选择变压器的短路阻抗。 2)优化运行条件。要提高电力线路的绝缘水平,特别是提高变压器出线一定距离的绝缘水平,同时提高线路安全走廊和安全距离要求的标准,降低近区故障影响和危害,包括重视电缆的安装检修质量(电缆头爆炸大多相当于母线短路);对重要变电站的中、低压母线,考虑全封闭,以防小动物侵害;提高对开关质量的要求,防止发生拒分等。

18、3)优化运行方式。确定运行方式要核算短路电流,并限制短路电流的危害。如采取装备用电源自投装置后开环运行,以减少短路时的电流和简化保护配置;对故障率高的非重要出线,可考虑退出重合闸保护;提高速切保护性能,压缩保护时间;220kV及以上电压等级的变压器尽量不直接带l0kV的地区电力负荷等。4)提高运行管理水平。首先要防止误操作造成的短路冲击;要加强变压器的适时监测和检修,及时发现变压器的变形强度,保证变压器的安全运行。 第二节 放电故障 根据放电的能量密度的大小,变压器的放电故障常分为局部放电、火花放电和高能量放电三种类型。一、放电故障对变压器绝缘的影响放电对绝缘有两种破坏作用:一种是由于放电质点

19、直接轰击绝缘,使局部绝缘受到破坏并逐步扩大,使绝缘击穿。另一种是放电产生的热、臭氧、氧化氮等活性气体的化学作用,使局部绝缘受到腐蚀,介质损耗增大,最后导致热击穿。 (1)绝缘材料电老化是放电故障的主要形式。 1)局部放电引起绝缘材料中化学键的分离、裂解和分子结构的破坏。 2)放电点热效应引起绝缘的热裂解或促进氧化裂解,增大了介质的电导和损耗产生恶性循环,加速老化过程。 3)放电过程生成的臭氧、氮氧化物遇到水分生成硝酸化学反应腐蚀绝缘体,导致绝缘性能劣化。 4)放电过程的高能辐射,使绝缘材料变脆。 5)放电时产生的高压气体引起绝缘体开裂,并形成新的放电点, (2)固体绝缘的电老化。固体绝缘的电老

20、化的形成和发展是树枝状,在电场集中处产生放电,引发树枝状放电痕迹,并逐步发展导致绝缘击穿。 (3)液体浸渍绝缘的电老化。如局部放电一般先发生在固体或油内的小气泡中,而放电过程又使油分解产生气体并被油部分吸收,如产气速率高,气泡将扩大、增多,使放电增强,同时放电产生的X蜡沉积在固体绝缘上使散热困难、放电增强、出现过热,促使固体绝缘损坏。二、放电故障的类型与特征1变压器局部放电故障在电压的作用下,绝缘结构内部的气隙、油膜或导体的边缘发生非贯穿性的放电现称为局部放电。局部放电刚开始时是一种低能量的放电,变压器内部出现这种放电时,情况比较复杂,根据绝缘介质的不同,可将局部放电分为气泡局部放电和油中局部

21、放电;根据绝缘部位来分,有固体绝缘中空穴、电极尖端、油角间隙、油与绝缘纸板中的油隙和油中沿固体绝缘表面等处的局部放电。 (1)局部放电的原因。 1)当油中存在气泡或固体绝缘材料中存在空穴或空腔,由于气体的介电常数小,在交流电压下所承受的场强高,但其耐压强度却低于油和纸绝缘材料,在气隙中容易首先引起放电。 2)外界环境条件的影响。如油处理不彻底下降使油中析出气泡等,都会引起放电。 3)由寻:制造质量不良。如某些部位有尖角高而出现放电。带进气泡、杂物和水分,或因外界气温漆瘤等,它们承受的电场强度较 4)金属部件或导电体之间接触不良而引起的放电。局部放电的能量密度虽不大,但若进一步发展将会形成放电的

22、恶性循环,最终导致设备的击穿或损坏,而引起严重的事故。 (2)放电产生气体的特征。放电产生的气体,由于放电能量不同而有所不同。如放电能量密度在10-9C以下时,一般总烃不高,主要成分是氢气,其次是甲烷,氢气占氢烃总量的曰80一90;当放电能量密度为10 810 7C时,则氢气相应降低,而出现乙炔,但乙炔这时在总烃中所占的比例常不到2,这是局部放电区别于其他放电现象的主要标志。随着变压器故障诊断技术的发展,人们越来越认识到,局部放电是变压器诸多有机绝缘材料故障和事故的根源,因而该技术得到了迅速发展,出现了多种测量方法和试验装置,亦有离线测量的。 (3)测量局部放电的方法。 1)电测法。利用示波器

23、、局部放电仪或无线电干扰仪,查找放电的波形或无线电干扰程度。电测法的灵敏度较高,测到的是视在放电量,分辨率可达几皮库。 2)超声测法。利用检测放电中出现的超声波,并将声波变换为电信号,录在磁带上进行分析。超声测法的灵敏度较低,大约几千皮库,它的优点是抗干扰性能好,且可“定位”。有的利用电信号和声信号的传递时间差异,可以估计探测点到放电点的距离。 3)化学测法。检测溶解油内各种气体的含量及增减变化规律。此法在运行监测上十分适用,简称“色谱分析”。化学测法对局部过热或电弧放电很灵敏,但对局部放电灵敏度不高。而且重要的是观察其趋势,例如几天测一次,就可发现油中含气的组成、比例以及数量的变化,从而判定

24、有无局部放电或局部过热。 2变压器火花放电故障 发生火花放电时放电能量密度大于106C的数量级。 (1)悬浮电位引起火花放电。高压电力设备中某金属部件,由于结构上原因,或运输过程和运行中造成接触不良而断开,处于高压与低压电极间并按其阻抗形成分压,而在这一金属部件上产生的对地电位称为悬浮电位。具有悬浮电位的物体附近的场强较集中,往往会逐渐烧坏周围固体介质或使之炭化,也会使绝缘油在悬浮电位作用下分解出大量特征气体,从而使绝缘油色谱分析结果超标。悬浮放电可能发生于变压器内处于高电位的金属部件,如调压绕组,当有载分接开关转换极性时的短暂电位悬浮;套管均压球和无载分接开关拨钗等电位悬浮。处于地电位的部件

25、,如硅钢片磁屏蔽和各种紧固用金属螺栓等,与地的连接松动脱落,导致悬浮电位放电。变压器高压套管端部接触不良,也会形成悬浮电位而引起火花放电。 (2)油中杂质引起火花放电。变压器发生火花放电故障的主要原因是油中杂质的影响。杂质由水分、纤维质(主要是受潮的纤维)等构成。水的介电常数e约为变压器油的40倍,在电场中,杂质首先极化,被吸引向电场强度最强的地方,即电极附近,并按电力线方向排列。于是在电极附近形成了杂质“小桥”,如图13所示。如果极间距离大、杂质少,只能形成断续“小桥”,如图13(a)所示。“小桥”的导电率和介电常数都比变压器油大,从电磁场原理得知,由于“小桥”的存在,会畸变油中的电场。因为

26、纤维的介电常数大,使纤维端部油中的电场加强,于是放电首先从这部分油中开始发生和发展,油在高场强下游离而分解出气体,使气泡增大,游离又增强。而后逐渐发展,使整个油间隙在气体通道中发生火花放电,所以,火花放电可能在较低的电压下发生。 (a) (b)图13在工频电压作用下杂质在电极间形成导电“小桥”的示意图a)杂质少、极间距离大;(b)杂质多、极间距离小如果极间距离不大,杂质又足够多,则“小桥”可能连通两个电极,如图13(b),这时,由于“小桥”的电导较大,沿“小桥”流过很大电流(电流大小视电源容量而定),使“小桥”强烈发热”,“小桥”中的水分和附近的油沸腾汽化,造成一个气体通道“气泡桥”而发生火花

27、放电。如果纤维不受潮,则因“小桥”的电导很小,对于油的火花放电电压的影响也较小;反之,则影响较大。因此杂质引起变压器油发生火花放电,与“小桥”的加热过程相联系。当冲击电压作用或电场极不均匀时,杂质不易形成“小桥”,它的作用只限于畸变电场,其火花放电过程,主要决定于外加电压的大小。(3)火花放电的影响。一般来说,火花放电不致很快引起绝缘击穿,主要反映在油色普分析异常、局部放电量增加或轻瓦斯动作,比较容易被发现和处理,但对其发展程度应引起足够的认识和注意。3变压器电弧放电故障电弧放电是高能量放电,常以绕组匝层间绝缘击穿为多见,其次为引线断裂或对地闪络和分接开关飞弧等故障。(1)电弧放电的影响。电弧

28、放电故障由于放电能量密度大,产气急剧,常以电子崩形e冲击电介质,使绝缘纸穿孔、烧焦或炭化,使金属材料变形或熔化烧毁,严重时会造成I备烧损,甚至发生爆炸事故,这种事故一般事先难以预测,也无明显预兆,常以突发的形式暴露出来。(2)电弧放电的气体特征。出现电弧放电故障后,气体继电器中的H2和C2H2等组分常高达几千UL/L,变压器油亦炭化而变黑。油中特征气体的主要成分是H2和C2H2,其次C2H6和CH4。当放电故障涉及到固体绝缘时,除了上述气体外,还会产生CO和CO2。综上所述,三种放电的形式既有区别又有一定的联系,区别是指放电能级和产气组分,联系是指局部放电是其他两种放电的前兆,而后者又是前者发

29、展后的一种必然结果。由于变压器内出现的故障,常处于逐步发展的状态,同时大多不是单一类型的故障,往往是种类型伴随着另一种类型,或几种类型同时出现,因此,更需要认真分析,具体对待。第三节绝缘故障目前应用最广泛的电力变压器是油浸变压器和干式树脂变压器两种,电力变压器的绝缘即是变压器绝缘材料组成的绝缘系统,它是变压器正常工作和运行的基本条件,变压器的使用寿命是由绝缘材料(即油纸或树脂等)的寿命所决定的。实践证明,大多变压器的损坏和故障都是因绝缘系统的损坏而造成。据统计,因各种类型的绝缘故障形成的事故约占全部变压器事故的85以上。对正常运行及注意进行维修管理的变压器,其绝缘材料具有很长的使用寿命。国外根

30、据理论计算及实验研究表明,当小型油浸配电变压器的实际温度持续在95时,理论寿命将可达400年。设计和现场运行的经验说明,维护得好的变压器,实际寿命能达到5070年:而按制造厂的设计要求和技术指标,一般把变压器的预期寿命定为20一40年。因此,保护变压器的正常运行和加强对绝缘系统的合理维护,很大程度上可以保证变压器具有相对较长的使用寿命,而预防性和预知性维护是提高变压器使用寿命和提高供电可靠性的关键。油浸变压器中,主要的绝缘材料是绝缘油及固体绝缘材料绝缘纸、纸板和木块等c所谓变压器绝缘的老化,就是这些材料受环境因素的影响发生分解,降低或丧失了绝缘强度。1固体纸绝缘故障固体纸绝缘是油浸变压器绝缘的

31、主要部分之一,包括:绝缘纸、绝缘板、绝缘垫、绝缘卷、绝缘绑扎带等,其主要成分是纤维素,化学表达式为(C6H10O6)n,式中n为聚合度。一般新纸的聚合度为1300左右,当下降至250左右,其机械强度已下降了一半以上,极度老化致使寿命终止的聚合度为150200。绝缘纸老化后,其聚合度和抗张强度将逐渐降低,并生成水、CO、CO2,其次还有糠醛(呋喃甲醛)。这些老化产物大都对电气设备有害,会使绝缘纸的击穿电压和体积电阻率降低、介损增大、抗拉强度下降,甚致腐蚀设备中的金属材料。固体绝缘具有不可逆转的老化特性,其机械和电气强度的老化降低都是不能恢复的。变压器的寿命主要取决于绝缘材料的寿命,因此油浸变压器

32、固体绝缘材料,应既具有良好的电绝缘性能和机械特性,而且长年累月的运行后,其性能下降较慢,即老化特性好。 (1)纸纤维材料的性能。绝缘纸纤维材料是油浸变压器中最主要的绝缘组件材料,纸纤维是植物的基本固体组织成分,组成物质分子的原子中有带正电的原子核和围绕原子核运行的带负电的电子,与金属导体不同的是绝缘材料中几乎没有自由电子,绝缘体中极小的电导电流主要来自离子电导。纤维素由碳、氢和氧组成,这样由于纤维素分子结构中存在氢氧根,便存在形成水的潜在可能,使纸纤维有含水的特性。此外,这些氢氧根可认为是被各种极性分子(如酸和水)包围着的中心,它们以氢键相结合,使得纤维易受破坏:同时纤维中往往含有一定比例(约

33、7左右)的杂质,这些杂质中包括一定量的水分,因纤维呈胶体性质,使这些水分尚不能完全除去。这样也就影响了纸纤维的性能。极性的纤维不但易于吸潮(水分使强极性介质),而且当纸纤维吸水时,使氢氧根之间的相互作用力变弱,在纤维结构不稳定的条件下机械强度急剧变坏,因此,纸绝缘部件一般要经过干燥或真空子燥处理和浸油或绝缘漆后才能使用,浸漆的目的是使纤维保持润湿保证其有较高的绝缘和化学稳定性及具有较高的机械强度。同时,纸被漆密封后,可减少纸对水分的吸收,阻止材料氧化,还町填充空隙,以减小可能影响绝缘性能、造成局部放电和电击穿的气泡。但也有的认为浸漆后再浸油,可能有些漆会慢慢溶人油内,影响油的性能,对这类油漆的

34、应用应充分子以注意。当然,不同成分纤维材料的性质及相同成分纤维材料的不同品质,其影响大小及性能也不同,如棉花中纤维成分最高,大麻中纤维最结实,某些进口绝缘纸板由于其处理加工好,使性能明显优于国产某些材质的纸板等。变压器大多绝缘材料都是用各种型式的纸(如纸带、纸板、纸的压力成型件等)作绝缘的。因此在变压器制造和检修中选择好纤原料的绝缘纸材料是非常重要的。纤维纸的特殊优点是实用性强、价格低、使用加工方便,在温度不高时成型和处理简单灵活,且重量轻,强度适中,易吸收浸渍材料(如绝缘漆、变压器油等)。(2)纸绝缘材料的机械强度。油浸变压器选择纸绝缘材料最重要的因素除纸的纤维成分、密度、渗透性和均匀性以外

35、,还包括机械强度的要求,包括耐张强度、冲压强度、撕裂强度和坚韧性: 1)耐张强度:要求纸纤维受到拉伸负荷时,具有能耐受而不被拉断的最大应力 2)冲压强度:要求纸纤维具有耐受压力而不被折断的能力的量度。 3)撕裂强度:要求纸纤维发生撕裂所需的力符合相应标准。 4)坚韧性:是纸折叠或纸板弯曲时的强度能满足相应要求。判断固体绝缘性能可以设法取样测量纸或纸板的聚合度,或利用高效液相色谱分析技测量油中糠醛含量,以便于分析变压器内部存在故障时,是否涉及固体绝缘或是否存在引起线圈绝缘局部老化的低温过热,或判断固体绝缘的老化程度。对纸纤维绝缘材料在运行及维护中,应注意控制变压器额定负荷,要求运行环境空气流通、

36、散热条件好,防止变压器温升超标和箱体缺油。还要防止油质污染、劣化等造成纤维的加速老化,而损害变压器的绝缘性能、使用寿命和安全运行。 (3)纸纤维材料的劣化。主要包括三个方面: 1)纤维脆裂。当过度受热使水分从纤维材料中脱离,更会加速纤维材料脆化。由于纸材脆化剥落,在机械振动、电动应力、操作波等冲击力的影响下可能产生绝缘故障而形成电气事故。 2)纤维材料机械强度下降。纤维材料的机械强度随受热时间的延长而下降,当变压器发热造成绝缘材料水分再次排出时,绝缘电阻的数值可能会变高,但其机械强度将会大大下降,绝缘纸材将不能抵御短路电流或冲击负荷等机械力的影响。 3)纤维材料本身的收缩。纤维材料在脆化后收缩

37、,使夹紧力降低,可能造成收缩移动,使变压器绕组在电磁振动或冲击电压下移位摩擦而损伤绝缘。2液体油绝缘故障液体绝缘的油浸变压器是1887年由美国科学家汤姆逊发明的,1892年被美国通用电气公司等推广应用于电力变压器,这里所指的液体绝缘即是变压器油绝缘。油浸变压器的特点:大大提高了电气绝缘强度,缩短了绝缘距离,减小了设备的体积;大大提高了变压器的有效热传递和散热效果,提高了导线中允许的电流密度,减轻了设备重量,它是将运行变压器器身的热量通过变压器油的热循环,传递到变压器外壳和散热器进行散热,从而提高了有效的冷却降温水平;由于油浸密封而降低了变压器内部某些零部件和组件的氧化程度,延长了使用寿命。(1

38、)变压器油的性能。运行中的变压器油除必须具有稳定优良的绝缘性能和导热性能以外,需具有的性质标准如表11所示。其中绝缘强度tg8、粘度、凝点和酸价等是绝缘油的主要性质指标。从石油中提炼制取的绝缘油是各种烃、树脂、酸和其他杂质的混合物,其性质不都是稳定的,在温度、电场及光合作用等影响下会不断地氧化。正常情况下绝缘油的氧化过程进行得很缓慢,如果维护得当甚至使用20年还可保持应有的质量而不老化,但混入油中的金属、杂质、气体等会加速氧化的发展,使油质变坏,颜色变深,透明度浑浊,所含水分、酸价、灰分增加等,使油的性质劣化。(2)变压器油劣化的原因。变压器油质变坏,按轻重程度可分为污染和劣化两个阶段。污染是

39、油中混入水分和杂质,这些不是油氧化的产物,污染油的绝缘性能会变坏,击穿电场强度降低,介质损失角增大。劣化是油氧化后的结果,当然这种氧化并不仅指纯净油中烃类的氧化,而是存在于油中杂质将加速氧化过程,特别是铜、铁、铝金属粉屑等。氧来源于变压器内的空气,即使在全密封的变压器内部仍有容积为025左右的氧存在,氧的溶解度较高,因此在油中溶解的气体中占有较高的比率。变压器油氧化时,作为催化剂的水分及加速剂的热量,使变压器油生成油泥,其影响主要表现在:在电场的作用下沉淀物粒子大;杂质沉淀集中在电场最强的区域,对变压器的绝缘形成导电的“桥”;沉淀物并不均匀而是形成分离的细长条,同时可能按电力线方向排列,这样无

40、疑妨碍了散热,加速了绝缘材料老化,并导致绝缘电阻降低和绝缘水平下降。(3)变压器油劣化的过程。油在劣化过程中主要阶段的生成物有过氧化物、酸类、醇类、酮类和油泥。早期劣化阶段。油中生成的过氧化物与绝缘纤维材料反应生成氧化纤维素,使绝缘纤维机械强度变差,造成脆化和绝缘收缩。生成的酸类是一种粘液状的脂肪酸,尽管腐蚀性没有矿物酸那么强,但其增长速率及对有机绝缘材料的影响是很大的。后期劣化阶段。是生成油泥,当酸侵蚀铜、铁、绝缘漆等材料时,反应生成油泥,是一种粘稠而类似沥青的聚合型导电物质,它能适度溶解于油中,在电场的作用下生成速度很快,粘附在绝缘材料或变压器箱壳边缘,沉积在油管及冷却器散热片等处,使变压

41、器工作温度升高,耐电强度下降。油的氧化过程是由两个主要反应条件构成的,其一是变压器中酸价过高,油呈酸性。其二是溶于油中的氧化物转变成不溶于油的化合物,从而逐步使变压器油质劣化。(4)变压器油质分析、判断利维护处理。 1)绝缘油变质。包括它的物理和化学性能都发生变化,从而使其电性能变坏。通过测试绝缘油的酸值、界面张力、汕泥析出、水溶性酸值等项目,可判断是否属于该类缺陷,对绝缘油进行再生处理,可能消除油变质的产物,但处理过程中也可能去掉了天然抗氧剂。 2)绝缘油进水受潮,由于水是强极性物质。在电场的作用下易电离分解,而增加了绝缘油的电导电流,因此,微量的水分可使绝缘油介质损耗显著增加。通过测试绝缘

42、油的微水,叮判断是否属于该类缺陷。对绝缘油进行压力式真空滤油,一般能消除水分。 3)绝缘油感染微生物细菌。例如在主变压器安装或吊芯时,附在绝缘件表面的昆虫和安装人员残留的闩:渍等都有可能携带细菌,从而感染了绝缘油:或者绝缘油本身已感染微生物。主变压器般运行在4080的环境下,非常有利于这些微生物的生长、繁殖。由于微生物及其排泄物中的矿物质、蛋白质的绝缘性能远远低于绝缘油,从而使得绝缘油介损升高。这种缺陷采用现场循环处理的方法很难处理好,因为无论如何处理,始终有一部分微生物残留在绝缘固体上。处理后,短期内主变压器绝缘会有所恢复,但由于主变压器运行环境非常有利于微生物的生长、繁殖,这些残留微生物还

43、会逐年生长繁殖,从而使某些主变压器绝缘逐年下降; 4)含有极性物质的醇酸树脂绝缘漆溶解在油中。在电场的作用下,极性物质会发生偶极松弛极化,在交流极化过程中要消耗能量,所以使油的介质损耗上升。虽然绝缘漆在出厂前经过固化处理,但仍可能存在处理不彻底的情况。主变压器运行一段时间后,处理不彻底的绝缘漆逐渐溶解在油中,使之绝缘性能逐渐下降。该类缺陷发生的时间与绝缘漆处理的彻底程度有关,通过一两次吸附处理可取得一定的效果。 5)油中只混有水分和杂质。这种污染情况并不改变油的基本性质。对于水分可用干燥的办法加以排除;对于杂质可用过滤的办法加以清除;油中的空气可通过抽真空的办法加以排除。 6)两种及两种以上不

44、同来源的绝缘汕混合使用。油的性质应符合相关规定;油的比重相同、凝固温度相同、粘度相同、闪点相近;且混合后油的安定度也符合要求。对于混油后劣化的油,由于油质已变,产生了酸性物质和油泥,闽此需用油再生的化学方法将劣化产物分离出来,才能恢复其性质。 3干式树脂变压器的绝缘与特性干式变压器(这里指环氧树脂绝缘的变压器) 主要使用在具有较高防火要求的场所。如高层建筑、机场、油库等。 (1)树脂绝缘的类型。环氧树指绝缘的变压器根据制造工艺特点可分为环氧石英砂混合料真空浇注型、环氧无碱玻璃纤维补强真空压差浇注型和无碱玻璃纤维绕包浸渍型三种。1)环氧石英砂混合料真空浇注绝缘。这类变压器是以石英砂为环氧树脂的填

45、充料,将经绝缘漆浸渍处理绕包好的线圈,放人线圈浇注模内,在真空条件下再用环氧树脂与石英砂的混合料滴灌浇注。由于浇注工艺难以满足质量要求,如残存的气泡、混合料的局部不均匀及可能导致局部热应力开裂等,这样绝缘的变压器不宜用于湿热环境和负荷变化较大的区域。 2)环氧无碱玻璃纤维补强真空压差浇注绝缘。环氧无碱玻璃纤维补强是用无碱玻璃短纤维玻璃毡为绕组层间绝缘的外层绕包绝缘。其最外层的绝缘绕包厚度一般为13m的薄绝缘,经环氧树脂浇注料配比进行混合,并在高真空下除去气泡浇注,由于绕包绝缘的厚度较薄,当浸渍不良时易形成局部放电点,因此要求浇注料的混合要完全,真空除气泡要彻底,并掌握好浇注料的低粘度和浇注速度

46、,以保证浇注过程中对线包浸渍的高质量。 3)无碱玻璃纤维绕包浸渍绝缘。无碱玻璃纤维绕包浸渍的变压器是在绕制变压器线圈的同时,完成线圈层间绝缘处理和线圈浸渍的,它不需要上述两种方式浸渍过程中的绕组成型模具,但要求树脂粘度小,在线圈绕制和浸渍的过程中树脂不应残留微小气泡。 (2)树脂变压器的绝缘特点及维护。 树脂变压器的绝缘水平与油浸变压器相差并不显著,关键在于树脂变压器温升和局部放电这两项指标上。 1)树脂变压器的平均温升水平比油浸变压器高,因此,相应要求绝缘材料耐热的等级更高,但由于变压器的平均温升并不反映绕组中最热点部位的温度,当绝缘材料的耐热等级仅按平均温升选择,或选配不当,或树脂变压器长期过负荷运行,就会影响变压器的使用寿命。由于变压器测量的温升往往不能反映变压器最热点部位的温度,因此,有条件时最好能在变压器最大负荷运行下,用红外测温仪检查树脂变压器的最热点部位,并有针对性地调整风扇冷却设备的方向和角度,控制变压器局部温升,保证变压器的安全运行。 2)树脂变压器局部放电量的大小与变压器的电场分布、树脂混合均匀度及是否残存气泡或树脂开裂等因素有关,局部放电量的大小影响树脂变压器的性能、质量及使用寿命。因此,对树脂变压器进行局部放电量的测量、验收,是对其工艺、质量的综合考核,在对树

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 学术论文 > 毕业设计

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922