1、宜宾学院本科毕业设计(论文)目录摘要IABSTRACTII第一章 水塔水位自动控制系统的现状和发展11.1 水塔供水的发展11.2传感器和PLC的应用2第二章 水塔水位自动控制系统的组成32.1系统构成及其控制要求32.1.系统框图5第三章水塔水位自动控制系统设计53.1水泵电动机控制电路的设计53.2水位传感器的选择:7第四章 PLC的设计84.1可编程序控制器(PLC)简介84. 2 PLC工作原理94.2.1扫描的概念94. 2. 2 PLC的工作过程94. 3 PLC的编程语言-梯形图114.4 编程软件的简介和梯形图的基本绘制规则124.5水塔水位自动控制系统的软件设计15第五章 结
2、束语(系统总结分析)215.1系统的优点215.2 结束语21参考文献23致 谢24摘要 供水是一个关系国计民生的重要产业。随着社会的发展和人民生活水平的提高,对城市供水提出了更高的要求,要满足及时、准确、安全保证充足供水,如果仍然沿用人工方式,劳动强度大,工作效率低,安全性难以保障,为此必须进行水塔水位控制自动化系统的改造。可编程控制器( PLC) 因其高可靠性和较高的性价比在工业控制中得到广泛的应用。本文针对目前比较流行的控制技术,利用PLC和传感器构成了水塔水位恒的控制系统。改造后的水塔水位自控系统,实现水塔水位自动控制系统,远程监控,实现无人值守。关键词: 可编程逻辑控制器(PLC)
3、水塔水位 自动控制AbstractWater supply is a major industry involving the interests of the state and the people. With development of society and the improvement of the peoples livelihood, city water supply has been brought forward a higher request. It needed to be timely , accurate and safely to plentifully c
4、onduct water supply. If we still continue to use a way of the man-power, the intensity of labor are high , availability is low and the security is difficult to ensure .We must carry out water tower water level under the control of automatic system reforming for this purpose . Programmable Logic Cont
5、roller (PLC) is applied broadly in industrial control because of high reliability and higher nature price. The main body of this paper on the control technology is aimed at being popular for at present comparatively, which makes the using of PLC and the sensor to compose water tower control system o
6、f permanent water level. Water tower control system after being reformed have realized water tower water level auto-controlling system , long-range supervisory control, and nobodys value guards realization.Key wards:Programmable Logic Controller. water pool water lever. automatically controls22 第一章
7、水塔水位自动控制系统的现状和发展1.1 水塔供水的发展中国的城镇供水具有120年的悠久历史。自1879年中国的旅顺建成第一座供水设施开始到1949年,全国只有60个城市有供水设施,日供水能力186万立方米。到1978年,全国有467个城市建有供水设施,日供水能力达到6382万立方米。改革开放以来,供水事业有了较快的发展,到1998年底,中国668个城市,具备日供水能力20992万立方米。另外,全国有13922个小城镇,建有水厂13828座,日供水能力达到2111万立方米。随着经济建设的大规模开展,我国城市给水工程建设也得到了飞速发展。旧式的水塔供水控制系统是通过继电器接触线路控制开停泵机来实现
8、控制水塔水位的。这种系统的缺点是控制线路复杂,维护工作繁重,操作麻烦,可靠性低,故障率高,而且供水量的增加也增加了供水人员的数量以及劳动量。随着计算机网络技术在工控领域的应用和发展,可编程控制PLC已具有很强的通讯功能,PLC系统也从单机控制系统,集中控制系统、分散型控制系统,发展到远程I/O控制系统。人们对供水系统的要求也越来越高如何及时、安全的供水成为不可避免的问题。能够准确有效的控制水塔水位达到供水要求就成为供水系统急需解决的问题。1.2传感器和PLC的应用现代水塔控制系统中大量先进仪表和设备的大量应用对其控制系统的稳定性和可靠性提出了越来越高的要求,传统的人工手动操作已远远不能获得好的
9、控制品质。可编程控制器( PLC) 因其高可靠性和较高的性价比在工业控制中得到广泛的应用。水塔水位控制系统中每个工艺段的设备及检测仪表相对集中, 控制相对独立,而PLC 特别适用于这样的系统特性, 因此能够完成生产过程中工业控制与状态监测。现代传感技术、电子技术、计算机技术、自动控制技术、信息处理技术和新工艺、新材料的发展为智能检测系统的发展带来了前所未有的奇迹。在工业、国防、科研等许多应用领域,智能检测系统正发挥着越来越大的作用。检测设备就像神经和感官,源源不断地向人类提供宏观与微观世界的种种信息,成为人们认识自然、改造自然的有力工具然随着科技的发展人们在控制水塔水位要求也越来越高,在引入P
10、LC后大大增进了水塔水位的自动化,不但达到了以前控制水泵的开关加水,而且达到及时准确、安全供水。第二章 水塔水位自动控制系统的组成2.1系统构成及其控制要求图2.1 水塔水位自动控制系统 S1: 水塔水位上限 当水塔水位达到此位置时液位传感器将向PLC发出最高水位信号请求停止水泵工作S2: 水塔水位下限 当水塔水位达到此位置说液位传感器将向PLC发出最低水位信号请求开启水泵工作S3: 水槽水位上限 当水塔水位达到此位置时液位传感器将向PLC发出最高水位信号请求停止水泵工作S4: 水槽水位下限 当水塔水位达到此位置说液位传感器将向PLC发出最低水位信号请求开启水泵工作M: 抽水泵 当水塔水位达到
11、最低水位时PLC将开到抽水泵向水塔供水Y: 补水泵 当水槽水位达到最低水位时PLC将开到抽水泵向水塔供水原理在控制系统启动后,若水槽水位低于水槽最低水位时液位传感器将水位信号转化为电信号向PLC发出信号,PLC根据此信号打开补水泵向水槽补水,当水位达到水槽最高水位时液位传感器将水位信号转化为电信号向PLC发出信号停止补水泵的工作,当水塔水位达到最低水位时,液位传感器将水位信号转化为电信号向PLC输出,PLC在收到信号后启动水泵向水塔加水,当水塔水位达到最高水位时传感器将水位信号转化为电信号向PLC发出信号停止水泵的工作。2.1.系统框图 如下图整个系统由一个水位传感器,一台PLC和一台水泵以及
12、若干部件组成。安装于水塔上的传感器将水塔的水位转化成1-5伏的电信号;电信号到达PLC将控制控制水泵的开关。水箱水位自动控制系统由PLC !核心控制部件# 高低位水箱的水位检测电路高低水位信号传送给PLC水泵电动机控制电路 PLC 控制启停及主备切换水塔水位检测系统水塔水位的实际高度 PLC水泵 图2.2 系统组成框图在水塔水位检测系统中通过超声波液位传感器将水位信号转换为电信号输入PLC中,在通过PLC控制水泵的启动或关闭。在系统运行中当水为低于最低值时PLC将启动水泵向水塔中加水,当水塔中的水达到最高值时PLC使水泵停止运转即水泵停止向水塔供水。等到水塔水位再次达到控制最低水位时 系统再次
13、重复这个过程第三章 水塔水位自动控制系统设计3.1水泵电动机控制电路的设计给排水工程中常使用三相异步电动机, 水泵上的电动机一般都是单向旋转有以下控制在水塔水位检测系统中通过水位传感器检测实际水位的高度,当水位低于最低水位时向PLC发出信息启动水泵,经过5分钟检测水塔水位是否提高控制水泵的工作,当水位达到最高水位时向PLC发出信息控制信息停止水泵工作。供水系统的基本原理如图2.1 所示,水位闭环调节原理是:通过在水塔中的水位传感器,将水位值变换为电流信号进入PLC,执行较后程序,通过水泵的开关对水塔中的水位进行自动控制。当PLC 出现故障时,还有一套手动控制来进行对水塔水位控制。手动控制采用交
14、流接触器。图3.1 水泵电动机控制图 水泵启动工作:当投入作为主电路电源开关的配线切断器MCCB时,在收到PLC的启动水泵指令后,电磁线圈MC中有电流流过,电磁接触器MC运行。当电磁接触器MC运行时,主电路的主触点MC闭合,常闭触点MC-b打开,常开触点MC-m2闭合,当主触点闭合时,电源电压施加到电动机M上,开始运转。当常闭触点MC-b打开时,绿灯GN-L中无电流流过,绿灯熄灭,当常开触点MC-m2闭合时,红灯RD-L中有电流流过,红灯点亮。水泵停止工作:当投入作为主电路电源开关的配线切断器MCCB时,在收到PLC的停止水泵指令后,电磁线圈MC中无电流流过,电磁接触器MC恢复。当电磁接触器M
15、C恢复时,主电路的主触点MC打开,常闭触点MC-b闭合,常开触点MC-m2打开,当主触点MC打开时,电源电压施不再施加到电动机M上,电动机M停止运转。当常闭触点MC-B闭合时,绿灯GN-L中有电流流过,绿灯点亮,当常开触点MC-m2打开时,红灯RD-L中无电流流过,红灯熄灭。 MCCB:Molded case circuit breakers 配线切断器是把开闭机构、后动装置等统一装到绝缘容器内的部件,它是利用操作手柄对通常使用状态的电路进行开闭控制的。经常应用于电源电路的开闭中,当发生过载、短路等情况时自动地切断电路。 MC:Electromagnetic contactors 所谓电磁接触
16、器,就是应用电磁铁对负载电流进行开闭控制的接触器,主要用于电源电路的开闭。电磁接触器有主触点和辅助触点构成的触点和电磁线圈与铁心构成的靠做电磁铁部分组成。 THR: 热敏继电器(thermal rekay) 是由加热器部分和触点机构部分组成的。当够电流流过加热部分时,双金属片因为受热而发生弯曲,因此触点部分被打开而使电路得到保护。3.2水位传感器的选择: 根据本设计的要求所选传感器要求在水面和水底都可以使用,所以选择超声波液位传感器U9ULS系列的 U9ULS10/100系列。U9ULS系列超声波液位传感器开关使用范围非常广。本产品具有焊接的不锈钢传感器探头,没有缝隙不会泄露,另外没有易损的活
17、动部件,故可承载非常高的温度和压力。它不会受温度、压力、密度和液体类型等参数的影响。在大多数情况下,电子设备放在铸铝的,NEMA 4/NEMA 7防爆且防水的壳体中。U9ULS具有以下特点:可应用于多种液体中 可承受高达1000psi的压力不受气泡、蒸汽、杂质后湍流等因素的影响。长度达121in(303.3cm)可安装在侧面、顶部或底部 工作原理:U9ULS系列是给予超声波理论工作的。当超声波在空气中传播时,会被严重衰减 相反地,如果在液体中传播时,超声波的传播会被大大增强。电子控制单元发出一系列的电信号,传感器将其转化为超声能量脉冲,并在被探测区内传播。当另一端街道有效信号时,就发出数据有效
18、的信号,表明有液体存在。这个信号输送到继电器,从而产生输出信号。 U9ULS100系列产品具有性能优异的传感器探头,可在温度为300F和压力为1000PSI的情况下良好的工作。 U9ULS10系列产品为更靠近池底,将顶端的探头设计成缺口形状。控制电路设计成小型,密封的结构,可安装在远程的控制地点。特点:10A的继电器输出115/230V AC,12V DC或24V DC输入高增益。无需效准,工作温度可达300 长度可达151.5CM表3.1 主要技术指标输入电压115/230V AC,50/60HZ或12/24V DCU9ULS10系列增益300:1U9ULS100系列增益1000:1U9UL
19、S10系列输出10 A DPDA继电器灭火两线制,4mA-干;20 mA- 湿U9ULS100系列输出10 A DPDT继电器延时0.5s重复性2mm外壳NEMA 4/NEMA 7,防水防爆罩,环氧涂层,铸铝。第四章 PLC的设计4.1可编程序控制器(PLC)简介 可编程序控制器(Programmable Logic Controller)简称PLC。所谓可编程序控制器,就是一种专为在工业环境下应用而设计的数字运算操作的电子系统,它采用一种可编程序的存储器,在其内部存储并执行逻辑运算、顺序控制、定时、记数和算术操作的指令,通过数字量或模拟量的输入输出来控制各种类型的机械设备或生产过程。随着PL
20、C的发展,它不仅能完成编辑、运算、控制,而且能实现模拟量、数字量的算术运算。4. 2 PLC工作原理 4.2.1扫描的概念 扫描是一种形象化的术语,用来描述可编程序控制器内部的CPU的工作过程。所谓扫描就是依次对各种规定的操作项目全部进行访问和处理。PLC运行时,用户程序中有众多的操作需要执行,但是一个CPU每一个时刻只能执行一个操作而不能同时执行多个操作,因此CPU按程序的顺序依次执行各个操作,这种需要处理多个作业时依次按顺序处理的工作方式称为扫描工作方式。由于扫描是周而复始无限循环的,每扫描一个循环所用的时间为扫描周期。 顺序扫描的工作方式是PLC的基本工作方式,它简单直观,方便用户程序设
21、计,为PLC的可靠运行提供了有利保证。一方面,所扫描的指令被执行后其结果马上就可以被后面将要扫描的指令所利用;另一方面,还可以通过CPU设置定时器来监视每次扫描时间是否超过规定时间,避免由于CPU内部故障使程序执行进入死循环。 4. 2. 2 PLC的工作过程 PLC的工作过程基本上是用户的梯形图程序的执行过程,是在系统软件的控制下顺次扫描各输入点的状态,按用户程序解算控制逻辑,.然后顺序向各个输出点发出相应的控制信号。除此之外,为提高工作的可靠性和及时的接收外来的控制命令,每个扫描周期还要进行故障自诊断和处理与编程器、计算机的通信。因此,PLC工作过程分为以下五步:(1)自诊断 自诊断功能可
22、使PLC系统防患于未然,而在发生故障时能尽快的修复,为此PLC每次扫描用户程序以前都对CPU、存储器、输入输出模块等进行故障诊断,若自诊断正常便继续进行扫描,而一旦发现故障或异常现象则转入处理程序,保留现行工作状态,关闭全部输出,然后停机并显示出错的信息。(2)与外设通信 自诊断正常后PLC即扫描编程器、上位机等通信接口,如有通信请求便响应处理。在与编程器通信过程中,编程器把指令和修改参数发送给主机,主机把要显示的状态、数据、错误码进行相应指示,编程器还可以向主机发送运行、停止、清内存等监控命令。在与上位机通信过程中PLC将接收上位机发出的指令进行相应的操作,把现场工作状态、PLC的内部工作状
23、态、各种数值参数发送给上位机以及执行启动、停机、修改参数等命令。 (3)输入现场状态 完成前两步工作后PLC便扫描各个输入点,读入各点的状态和数据,如开关的通断状态、形成现场的内存映象。这一过程也称为输入采样或输出刷新,在一个扫描周期内内存映象的内容不变,即使外部实际开关状态己经发生了变化也只能在下一个扫描过程中的输入采样时刷新,解算用户逻辑所用的输入值是该输入值的内存映象值而不是当时现场的实际值。(4)解算用户逻辑 即执行用户程序。一般是从用户出现存储器的最低地址存放的第一条程序开始,在无跳转的情况下按存储器地址的递增方向顺序的扫描用户程序,按用户程序进行逻辑判断和算术运算,因此称之为解算用
24、户逻辑。解算过程中所用的计数器、定时器,内部继电器等编程元件为相应存储单元的即时值,而输入继电器,输出继电器则用的是内存映象值。在一个扫周期内,某个输入信号的状态不管外部实际情况是否己经变化,对整个用户程序是一致的,不会造成结果混乱。(5)输出结果 将本次的扫描过程中解算最新结果送到输出模块取代前一次扫描解算的结果,也称为输出刷新。解算用户逻辑到用户程序为止,每一步所得到的输出信号被存入输出信号寄存表并未发送到输出模块,相当于输出信号被输出门阻隔,待全部解算完成后打开输出门一并输出,所用输出信号由输出状态表送到输出模块,其相应开关动作。驱动用户输出设备即PLC的实际输出。 在依次完成上述五个步
25、骤操作后PLC又开始进行下一次扫描。如此不断的反复循环扫描,实现对全过程及设备的连续控制,直至接收到停止命令、停电、或出现故障。4. 3 PLC的编程语言-梯形图梯形图在形式上类似于继电器控制电路图,它简单,直观,易读,好懂,是PLC中普遍采用的一种编程方式。梯形图中沿用了继电器线路的一些图形符号,这些图形符号被称为编程元件,每一个编程元件对应有一个编号。不同厂家的PLC,其编程元件的多少及编号方法不尽相同,但是基本的元件及功能很相近。梯形图有如下特点。梯形图按自上而下、从左到右的顺序排列。每一个继电器为一个逻辑行,称为梯形。每一个逻辑行起始于左母线,然后是触点的各种联接,最后是线圈,整个图形
26、呈梯形。梯形图中的继电器不是继电器控制电路中的物理继电器,它实质上是变量存储器中的位触发器,因此称为软继电器,相应的某位触发器为真态,表示该继电器通电,其常开触点闭合,常闭触点打开。 梯形图中的继电器的线圈的定义是广义的,除了输出继电器、内部继电器以外,还包括定时器、计数器等。梯形图中,一般情况下某个编号的继电器线圈只能出现一次,而继电器的触点是可以被无限制的引用,既可是常开触点也可以是常闭触点。梯形图是PLC形象化的编程方式,其左右两侧的母线不接任何电源,因而图中各个支路也没有真实的电流通过,但是为了方便,常用有电流来形象的描述解算中满足输出线圈的动作条件。所以仅仅是概念上的电流,而且认为它
27、只能从左向右流动,层次的改变只能是先上后下。3.4可编程序控制器PLC的优点能适应工业现场的恶劣环境,不要求空调,能抗电磁干扰与电压冲击。简单,易于使用,不必要求微机软硬件方面的知识,编程不需要高级语言。可靠性高,平均故障间隔时间(MTBF)超过20000小时。编程或修改程序容易,程序可以保存和固化。体积小,价格低。可直接将数据送入处理器中,可直接连接到现场。可在基本系统上扩展,系统容易配置,与负载最远距离可达10000英尺,内存可以扩展。有很强的通讯功能,可与多种支持设备连接。系统化,有标准外围接口模块。系统在一种现场不需要时,仍可改在另一种现场上使用等一系列优点。4.4 编程软件的简介和梯
28、形图的基本绘制规则PLC控制程序采用OMRON公司提供的CProgrammer编程软件开发,基于windows的应用软件,梯形图(lad)语言最接近于继电器接触器控制系统中的电气控制原理图,是应用最多的一种编程语言,与计算机语言相比,梯形图可以看作是PLC的高级语言,几乎不用去考虑系统内部的结构原理和硬件逻辑,因此,它很容易被一般的电气工程设计和运行维护人员所接受,是初学者理想的编程工具。功能块图(FWD)的图形结构与数字电路的结构极为相似,功能块图中每个模块有输入和输出端,输出和输入端的函数关系使用与、或、非、异或逻辑运算,模块之间的连接方式与电路的连接方式基本相同。C20是普及型可编程程序
29、控制器。他有两种型号一是不可编程的,称为基本型;另一种是可编程的称为扩展型,基本型有16点输入 8点输出,以及136个内部辅助继电器;扩展型的输入点数可扩展到80点;输出点数可扩展到60,起它功能和基本型相同。C20 不但具有一般小型PC所具有的逻辑运算指令、定时指令 记数指令 和连锁指令 还具有数值运算指令 C系列P型机是在C20 基础上发展来的增强型小型机,和C20相比,P型机结构更为合理 指令功能大大增强。几种型号的P型机硬件机构,指令系统,性能指标,编程方法完全相同,这类PC专用开关量控制,其基本的构成仍可分为:主机单元,扩张单元和编程器。 根据对本设计的分析及教材上所讲的设计规则,该
30、系统是PLC单机控制,由此计算输入、输出(I/O)点数,并且在选PLC时要在实际需要点数的基础上预留10%的余量。因为该系统只有4输入点和2输出点,所以本设计选择C20P 介绍一些关于C20P的参数。 C20P 机包括有主机单元、I/O扩展单元、I/O链接单元、A/D转换单元、D/A转换单元等。C20P主机箱的输入点为12个,是00CH的00000011端子,输出点为8个是05CH的05000507。主机单元是包含了CPU的中央处理单元,因此也称CPU箱。CPU箱中包括有CPU、RAM、ROM及与编程器或EPROM写入等外设相连的接口,与I/O扩展单元相连的扩展口,有输入输出端子、高速计数输入
31、端子、+24V DC输出端子、电源接线端子、输入输出状态指示灯、电源指示灯、报警灯等。C20P提供了12入点、8输出点。它有编码、译码、数制转换,可逆计数等功能;有64个16位的数据存贮区。可以共用编程器、EPROM写入器、打印接口及图形编程器等C系列的外设。有16个特殊功能继电器,分别是:1808:电池异常为ON1809:当扫描时间在100130ms时为ON1810:使用高速计数器,收到复位信号时它在一个扫描周期内为ON 1811、1812、1814:常OFF 1813:常ON 1815:程序运行单脉冲 1900: T=0.1s的连续脉冲 1901: T=0.2s的连续脉冲 1902: T=
32、1s的连续脉冲 1903: 操作数不是BCD码或数制转换时BCD码大于9999为ON 1904: 数值运算时有进位/借位时为ON1905: 数值比较时大于为ON1906: 数值比较时等于为ON1907: 数值比较时小于为ON1907: 数值比较时小于为ON C20P-型机CPU单元 表4.1 C20P 性能参数电源电压输入输出型号100-240VAC24VDC,12点继电器(带插座) 8点C20P-CDR-AE晶体管1A 8点C20P-CDT1-AE双向可控硅1A 8点C20P-CDS1-AE24VDC,2点100VAC,10点继电器(带插座) 8点C20P-CAR-AE24VDC24VDC,
33、12点继电器(带插座) 8点C20P-CDR-DE晶体管1A 8点C20P-CDT1-DE输入输出扩展单元:电源电压 100-240VAC 输入 24VDC,12点 输出 继电器(带插座) 8点 C20P一般规格项目型号C20P电源电压-A AC100240V 50/60Hz -D DC24V容许电压范围AC85264v DC20.426.4V型号末尾-A耗电40VA以下型号末尾-A耗电20W以下DV24V输出端子+-10%最大0.2A使用环境温度055oC使用环境湿度3585%RH(不结露)保存环境湿度-2065oCC20P的性能规格项目型号C20P控制方式存储程序编程语言梯形图方式指令长度
34、每条指令一步,每指令占16字指令种类37种(基本指令12种,应用指令25种)处理时间平均10us/1指令(RAM),13us/1指令(ROM)程序容量1194步输入输出继电器2036点(C20P)内部辅助继电器136点(10001807)使用高速计数命令时,1807为其专用特殊辅助继电器1,6点(18081907)保持继电器160点(HR000915)暂时记忆寄存器8点(TR07)数据存储器64字(DM0063)使用高速计数命令时,DM3263为其专用定时器/计数器TIM,TIMH,CNT合计48点高速计数器1点停电保持机能保持继电器、计数器、数据存储器内容电池寿命25oC条件下为5年自诊断机
35、能CPU异常(时钟、监视、定时器)4.5水塔水位自动控制系统的软件设计确定PLC所需的各类继电器,对各元件编号,如下表所示。输入/输出端口地址分配输入输出定时器名称地址名称地址名称地址S11000M05004秒延时TIM02S21001Y0501产生1秒时钟TIM00S31002TIM01S410033、画出PLC的外部输入输出电路如图6-2所示。 图4.1 PLC外接线图S1: 水塔水位上限S2: 水塔水位下限S3: 水槽水位上限S4: 水槽水位下限M: 抽水泵Y: 补水泵 图2.2 水塔水位系统流程图1.硬件连线()输入COM端和电源连接输入端和水塔水位自动控制系统输入端连接()输出COM
36、端串联连接和电源连接(COMCOMCOMCOMCOMCOMCOMCOMCOM电源)输出端(OUT端)和水塔水位自动控制系统试验模板输入端相连(OUT O1Y,OUT O2M,)2分配:输入调试单元 PLC内部 说明I000 00000 启动按钮I001 S1 00001 水塔水位上限I002 S2 00002 水塔水位下限I003 S3 00003 水槽水位上限I004 S4 00004 水槽水位下限输出调试单元 内部 说明001 010CH01 Y002 010CH02 M3.程序说明当启动按钮(IN I0)打开,若水槽水位低于水位下限时时,补水阀(Y)抽水。若水槽水位高于水位上限时,补水阀
37、(Y)关闭,停止抽水。同时,当水塔水位低于水位下限时,并且水槽水位高于水位下限时时,抽水泵(M) 抽水(即M灯亮)。当水塔水位高于水位上限时时,抽水泵(M)关闭,停止抽水。若水塔水位低于水位下限,水槽水位低于水槽水位下限时,抽水泵(M)不抽水。 编制梯形图并写出语句表,梯形图如图语句表如表步序指令地址/数据说明步序指令地址/数据说明0000LDTIM02报警时产生1秒时钟0018LDTIM020001AND00030019AND00030002ANDNOTTIM010020ANDNOT000003LD10000021LD10010004TIMTIM000022ANDNOTTIM020005#0
38、0050023ORLD0006LDTIM000024LDTIM020007LD10000025ANDNOT00030008TIM010026ORLD0009#00050027ANDNOT00020010LD0003水池低水位0028OUT0501电磁阀Y0011OR10010029LD00010012ANDNOT00020030OR05000013OUT10010031ANDNOT00000014LD10010032ANDNOT00030015LD10000033OUT0500电机M0016TIM02延时4秒0034FEND主程序结束0017#00400035END总程序结束第五章 结束语(系
39、统总结分析)5.1系统的优点水塔水位自动控制系统因采用PLC控制水泵电源开关,实现了即使安全的完成操作。因实现水位自动控制,不需要操作人员频繁操作,降低了人员的劳动强度,节省了人力并是水塔的供水达到及时、安全、准确。5.2 结束语现代传感技术、电子技术、计算机技术、自动控制技术、信息处理技术和新工艺、新材料的发展为智能检测系统的发展带来了前所未有的奇迹。在工业、国防、科研等许多应用领域,智能检测系统正发挥着越来越大的作用。检测设备就像神经和感官,源源不断地向人类提供宏观与微观世界的种种信息,成为人们认识自然、改造自然的有力工具。 本课题研究的内容是“水塔水位自动控制系统”。水位控制在日常生活及
40、工业领域中应用相当广泛,比如水塔、地下水、水电站等情况下的水位控制。而以往水位的检测是由人工完成的,值班人员全天候地对水位的变化进行监测,用有线电话及时把水位变化情况报知主控室。然后主控室再开动电机进行给排水。很显然上述重复性的工作无论从人员、时间和资金上都将造成很大的浪费。同时也容易出差错。因此急需一种能自动检测水位,并根据水位变化的情况自动调节的自动控制系统,我所研究的就是这方面的课题。水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。本设计采用传感器检测进行主控制,在水池上安装超声波传感器水位装置。把测量到的水位变化转换成相应的电信号。 随着科学技术技术的飞速发展,自动控
41、制供水技术在小区已普遍使用。用PLC来实现自动供水,与其它供水方式相比较而言,其优点是非常明显的。节能效果十分显著,启动平稳,启动电流小,避免了电机启动时对电网的冲击,延长了泵和阀门等的使用寿命。供水控制系统提高了小区的供水质量。各项控制指标达到了用户的要求。高度智能化,系列标准化是未来供水设备适应供水调度和整体规划要求的必然趋势。随着PLC飞速发展,基于PLC的水塔水位自动控制系统以其节能、安全、高品质的供水质量等优点将在供水领域得到更为广泛的应用,使我国供水行业不断向前发展。参考文献1 魏志精.可编程控制器件应用技术 电子工业出版社 19952 江秀汉 汤楠.可编程控制原理与应用(第二版)
42、西安:西安电子科技大学出版社 20043 宋序彤. 我国城市供水发展有关问题分析J城镇供水2001,2:22264 史志强水厂自动化控制系统中可编程控制器的应用J福州大学学报(自然科学版),1998,26(6):44475大宾庄司 电气控制线路(数字部分) 关静 译 科学出版社 20056大宾庄司 电气控制线路(基础与实物) 卢伯英 译 科学出版社20057 PLC应用开发技术与工程实践 北京:人民邮电出版社 2005.98 廖常初 PLC编程及应用 北京:机械工业出版社 2002.99丁炜,魏孔平 可编程控制器在工业中的应用 化学工业出版社 2004.710 宋序彤. 我国城市供水发展有关问
43、题分析J城镇供水2001,2:22211 路林吉 可编程控制器原理及应用 清华大学出版社 200.912周志敏 周纪海 纪爱华编著.电工控制实用电路.北京:电子工业出版社,2005.1113 宋伯生. 可编程控制器配置.编程.联网 北京:中国劳动出版14杨帮文. 新型工业控制开关应用手册 北京:机械出版社 200615程周.电气控制与PLC原理及应用.北京:电子工业出版社,200316齐蓉 肖维蓉. 可编程计算机控制器件技术 北京:电子工业出版社 200517汪晓平. PLC 可编程控制系统开发实例导航 北京:人民邮电出版社 200418 李国厚 张发玉.PLC原理与应用 北京: 清华大学出版社 2005致 谢 本论文是在张雪平教授的悉心指导下完成的。作为一个本科生的毕业设计,由于经验的不足,在设计的过程中遇到许多的问题,如果没有导师的督促和指导, 在这里首先要感谢我的导师张雪平教授。我的设计较为枯燥,但是张老师仍然细心地为我检察错误并给予修改建议。张老师治学严谨和科学研究的精神是我学习的榜样,对我今后的学习和工作是一种鼓励。同时还要感谢所有的同学们,在整个设计中得到了同学们的支持和鼓励。此次毕业设计才会顺利完成。 经过本次毕业设计使我将大学四年来所学的理论知识和实际应用密切联系起来,既锻炼了我们的实际操作能力,又使理论知识得以加强。特别地,对评阅本论文的各位专家表示衷心的感谢