1、 河南机电高等专科学校毕业设计/论文 绪论电力工业是国民经济的一项基础工业和国民经济发展的先行工业,它是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,它为国民经济的其他各部门快速、稳定发展提供足够的动力,其发展水平是反映国家经济发展水平的重要标志。由于电能在工业及国民经济的重要性,电能的输送和分配是电能应用于这些领域不可缺少的组成部分。所以输送和分配电能是十分重要的一环。变电站使电厂或上级电站经过调整后的电能书送给下级负荷,是电能输送的核心部分。其功能运行情况、容量大小直接影响下级负荷的供电,进而影响工业生产及生活用电。若变电站系统中某一环节发生故障,系统保护
2、环节将动作。可能造成停电等事故,给生产生活带来很大不利。因此,变电站在整个电力系统中对于保护供电的可靠性、灵敏性等指标十分重要。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。这就要求变电所的一次部分经济合理,二次部分安全可靠,只有这样变电所才能正常的运行工作,为国民经济服务。变电站是汇集电源、升降电压和分配电力场所,是联系发电厂和用户的中间环节。变电站有升压变电站和降压变电站两大类。升压变电站通常是发电厂升压站部分,紧靠发电厂。将压变电站通常远离发电厂而靠近负荷中心。这里所设计得就是110KV降压变电站。它通常有高压配电室、变压器室、低压配电室等组成。变电站内的高压配电室、变压
3、器室、低压配电室等都装设有各种保护装置,这些保护装置是根据下级负荷地短路、最大负荷等情况来整定配置的,因此,在发生类似故障是可根据具体情况由系统自动做出判断应跳闸保护,并且,现在的跳闸保护整定时间已经很短,在故障解除后,系统内的自动重合闸装置会迅速和闸恢复供电。这对于保护下级各负荷是十分有利的。这样不仅保护了各负荷设备的安全利于延长是使用寿命,降低设备投资,而且提高了供电的可靠性,这对于提高工农业生产效率是十分有效的。工业产品的效率提高也就意味着产品成本的降低,市场竞争力增大,进而可以使企业效益提高,为国民经济的发展做出更大的贡献。生活用电等领域的供电可靠性,可以提高人民生活质量,改善生活条件
4、等。可见,变电站的设计是工业效率提高及国民经济发展的必然条件。由于本地区经济发展的需要电力供不应求的情况下,为了适应本地区经济的发展要在本地区建设110kV变电站。 具体要求如下:本电力系统应包括变电,配电以及相应的通信、安全自动、继电保护、调度自动化等设施。在国家发展计划的统筹规划下,合理的开发资源,用最少的资金为国民经济各部门及人民生活提供充足、可靠、合格的电能。本次设计的变电站为110KV变电站,其下级负荷为35KV级乡镇企业、农业和10KV级工业及其它负荷。这些负荷不仅包括水泥厂、开关厂等工业部门,也有政府、市区等非工业部门。他们对供电的要求不同。依照先行的原则,依据远期负荷发展本设计
5、该变电所,本变电站主要任务是把110KV变成35kV和10kV电压供周边城乡使用。尤其对本地区大用户进行供电,改善提高供电水平,提高了本地供电质量和可靠性。现在,随着大电网系统的建设,输电的电压等级越来越高,这一方面使降低损耗的需要,另一方面也是工业生产等负荷发展的需要。我国目前广泛采用的输电等级有110KV、220KV等级别,还有500KV级的输电线路也在迅速发展,所以110KV级的变电站在电力系统中的应用也十分广泛。并且伴随电力系统中所用电气元件产品诸如断路器、继电器、隔离开关等性能指标的提高,变电站的功能也会越来越完善,可靠性也会得到很大的提高。第1章 变电站的分析与设计1.1变电站的总
6、体分析电力工业是国民经济的一项基础工业和国民经济发展的先行工业,它是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,它为国民经济的其他各部门快速、稳定发展提供足够的动力,其发展水平是反映国家经济发展水平的重要标志。随着社会的发展,电能被日益广泛的应用于工农业生产以及人民的日常生活中。电能可以方便的转化为期他形式的能源,例:机械能、热能、光能、磁能等,并且电能的输送和分配易于实现,可以输送到需要它的人和工作场所和生活场所。电能的应用规模也很灵活以电能作为动力,可以促进工农业的机械化和自动化。保证产品质量大幅度提高劳动生产率。同时提高电气化程度以电能代替其它形式的能
7、源,是节约能源消耗的一个重要的途径。为了满足市区生产和生活的供电要求,决定要在YB市新建一所110KV降压变电站。变电站的站址选择靠近公路,有良好的交通运输条件,同时也为变电站职工的生活提供了方便。变电站所处区域地势平坦、土质为黏土,海拔200米,地势平坦,为非强地震区,输电线路走廊宽阔,有利于线路架设和电气设备的安装,全线为黄土层带。地耐力为2.4,天然容重r2,内擦角,土壤电阻率为小于400欧米,变电所保护地下水位低,水质良好,无腐蚀性。有利于变电站的经济运行,另外,也降低对防雷保护装置的要求。气象条件:年最高气温40c,年最低气温30,年平均气温20,最热月平均最高气温30,当地雷暴日:
8、40日年,属于我国第六标准气象区。变电站选址避开了大气严重污秽和严重盐雾地区及冬季主导风向的影响,即避开了工业电力负荷,如化肥厂、纺织厂、水泥厂、柴油机厂等污染企业的影响。此外,这些电力负荷位于变电站的北部和南部,变电站设在污染源的下风口(冬季主导风向为西北风),受到轻微污染,影响电力系统的运行性能。变电站东部没有重要的电力负荷,这为进出线提供了广阔的线路走廊,还有利于变电站的扩建 ,另外,变电站选址还考虑了变电站与附近设施的影响。因此,若变电站选址不当,必将影响企业供电系统的主接线方式,电网的损失及投资的大小,还可能引起电力倒流,甚至产生更严重的后果。根据电力系统规划,本变电所的规模如下:电
9、压等级:110/35/10KV线路回数:110KV 侧 2回(架空线)。 35KV侧 6回(架空线)。 10KV侧 12回(其中电缆6回)。该变电所位于YB市郊东南郊,交通便利,变电所的西边为10KV负荷密集区,主要有棉纺厂、食品厂、印染厂、针织厂、柴油机厂、毛纺厂及部分市区用电。变电所以东主要有35KV的水泥厂、化肥厂及市郊其它用电。图11 系统接线简图1.2 变电站的负荷分析根据负荷允许停电程度的不同,可以将负荷分为三个等级,即一级负荷、二级负荷、三级负荷。等级不同,对电力系统供电可靠性与稳定性的要求也不同。如果停电,一级负荷将造成人身伤亡或引起对周围环境严重污染对工厂将造成经济上的巨大损
10、失,如重要的大型的 设备损坏,重要产品或用重要原料生产的产品大量报废,还可能引起社会秩序混乱或严重的政治影响。二级负荷会造成较大的经济损失,如生产的主要设备损坏、产品大量报废或减产;还可能引起社会秩序混乱或较严重的政治影响。三级负荷造成的损失不大或不会造成直接经济损失。由此可知,供电的稳定性直接影响经济的发展,负荷等级不同,对供电的要求也不相同:对于一级负荷,必须有二个独立电源供电,且任何一个电源失去后,能保证对全部一级负荷不间断供电。对特别重要的一级负荷应该由二个独立电源点供电。对于二级负荷,一般要有两个独立电源供电,且任何一个电源失去后,能保证全部或大部分二级负荷供电。对于三级负荷,一般只
11、需一个电源供电。对于110KV侧,有市甲线、市系线,通过甲变电站、乙变电站和S、SII相连,构成了电力系统环网。如果有任何一条线路发生故障,会直接影响电力系统环网运行的稳定性。由于各条线路的最大穿越功率不同,对电力系统造成的破坏程度也有所不同。但是,它们都会影响变电站的稳定运行,电能质量下降,导致变电站变压器容量在三相不平衡负荷下运行,产生谐波电流,造成严重的后果。 表11 35kv负荷分析电压等级负荷名称最大负荷(MW)负荷组成()自然功率(H)线长(KM)近期远景一二35kv郊一4.87.25300.85650012郊二68.45300.85650016郊三68.25300.8565001
12、6水泥厂13.64.815300.85650020水泥厂23.64.815300.85650020水泥厂33.64.815300.856500201.2.1 、类负荷分析 27.048MVA (2.83.272.42.4+2.8+2.4)1.050.9210.5MVA在35KV负荷中一、二类负荷比较大,发生断电时,会造成生产机械的寿命缩短产品质量下降和一定的经济损失.因此要尽可能保证其供电可靠性。表1-2 10KV负荷分析电压等级负荷名称最大负荷(MW)负荷组成 ()自然功率(H)线长(KM) 近期远景一二 10kv棉纺厂14.8620400.8560003.5棉纺厂24.8620400.85
13、60003.5印染厂13.69.630400.8560004.5印染厂23.64.830400.8560004.5毛纺厂2.44.820400.8560002.5针织厂2.43.620400.8560001.5橡胶厂2.43.630400.8560003市区13.64.820400.8560002市区23.64.820400.8560002市区33.64.820400.8560002备用1 3.6.0.85备用23.60.85 在10KV负荷中,印染、毛纺厂、针织厂、棉纺厂、橡胶厂、市区一、二、三类负荷比较大;若发生停电对企业造成出现次品,机器损坏,甚至出现事故,对市区医院则造成不良政治和社会
14、影响,严重时造成重大经济损失和人员伤亡,必须保证其供电可靠性。第2章 主变压器的选择及主接线选择2.1 主变压器的选择2.1.1 主变容台数的选择 (1)对大城市郊区的一次变,在中、低压侧构成环网情况下,装两台主变为宜。(2)对地区性孤立的一次变或大型的工业专用变电所,设计时应考虑装三台的可能性。(3)对规划只装两台主变的变电所,其主变基础宜大于变压器容量的1-2级设计,以便负荷发展时更换主变。变压器的容量、台数直接影响到变电站的电气主接线形式和配电装置的结构。它的确定除了依据传递容量基本原始资料外,还要根据电力系统510年的远景发展计划,输送功率的大小、馈线回路数、电压等级以及接入电力系统中
15、的紧密程度等因素,进行综合分析与合理的选择。2.1.2 主变容量选择根据“35110KV变电所设计规范”主要变压器的台数和容量,应根据地区供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。在有一、二级负荷变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60的全部负荷,并应保证用户的一、二级负荷。具有三种电压的变电所,如通过主变压器各侧线圈的功率均达到该变压器的15以上,主要变压器宜采用三线圈变压器。由于我国电力不足、缺电严重、电网电压波动较大。变压器的有载调压是改善电压质量、减少电压波动的
16、有效手段。对电力系统,一般要求110KV及以下变电所至少采用一级有载调压变压器,因此城网变电所采用有载调压变压器的较多。2.1.3 主变容量选择原则(1)主变容量选择一般应按变电所建成后5-10年的规划负荷选择,并适当考虑到远期几年发展,对城郊变电所,主变容量应与城市规划相结合。(2)根据变电所带负荷性质和电网结构来确定主变容量,对有重要负荷的变电站应考虑一台主变压器停运时,其余主变压器容量在计及过负荷能力后的允许时间内,应保证用户的一、二级负荷;对一般性变电站,当一台主变停运时,其余主变压器应能保证全部负荷的60。(3)同级电压的单台降压变压器容量的级别不宜太多,应从全网出发,推行系列化,标
17、准化。(主要考虑备用品,备件及维修方便)2.1.4 主变台数的选择原则(1)对大城市郊区的一次变,在中、低压侧构成环网情况下,装两台主变为宜。(2)对地区性孤立的一次变或大型的工业专用变电所,设计时应考虑装三台的可能性。(3)对规划只装两台主变的变电所,其主变基础宜大于变压器容量的1-2级设计,以便负荷发展时更换主变。(4)在有一级,二级负荷的变电站中,应该装设两台主变电压器。当技术经济比较合理时主变压器的台数也可以多于两台。如果变电站可由中、低压侧电力网中取得足够能量的备用电源时,可以装设一台主变压器。(5)装设两台及其以上主变压器的变电站中,当断开一台时,其余主变压器的容量应保证用户一级负
18、荷和部分二级负荷(一般不应小于主变压器容量的60%)。具有三种电压等级的变电站中,如果通过主变压器各侧绕组的功率均达到主变压器容量的15%时,主变电压器宜采用三绕组变压器。2.1.5 主变容量和台数选择计算(1)35KV中压侧:其出线回路数为6回,,结合“1. 2变电站的负荷分析”35kv负荷情况分析表11知: 27.048MVA(2)10KV低压侧:由于其出线回路数共12回,故可取Kt=0.85,结合10kv负荷情况分析可知: 0.851.05(0.851.05(886.156.156.44.8+5+6+6+4.615+4.615)58.664MVA则三绕组变压器的计算容量:因此,选择两台5
19、0MVA的变压器。校验:(1)(2-1)满足一台停运时另一台不小于全部容量的60。 31.8MVA(2)(2-1)也满足一台停运时另一台满足全部一、二类负荷。综上所述,最终确定为SFSZ750000/110型变压器。2.1.6 绕组数和绕组连接方式的选择参考电力工程电气设计手册和相应的规程中指出:在具有三种电压的变电所中,如果通过主变各绕组的功率达到该变压器容量的15以上,或在低压侧虽没有负荷,但是在变电所的实际情况,由主变容量选择部分的计算数据,明显满足上述情况。故YB市郊变电所主变选择三绕组变压器。 参考电力工程电气设计手册和相应规程指出:变压器绕组的连接方式必须和系统电压一致,否则不能并
20、列运行。电力系统中变压器绕组采用的连接方式有Y和型两种,而且为保证消除三次谐波的影响,必须有一个绕组是型的,我国110KV及以上的电压等级均为大电流接地系统,为取得中型点,所以都需要选择的连接方式。对于110KV变电所的35KV侧也采用的连接方式,而6-10KV侧采用型的连接方式。故YY市郊变电所主变应采用的绕组连接方式为:。2.1.7 全绝缘、半绝缘、绕组材料等问题的解决在110KV及以上的中性点直接接地系统中,为了减小单相接地时的短路电流,有一部分变压器的中性点采用不接地的方式,因而需要考虑中性点绝缘的保护问题。110KV侧采用分级绝缘的经济效益比较显著,并且选用与中性点绝缘等级相当的避雷
21、器加以保护。35KV及10KV侧为中性点不直接接地系统中的变压器,其中性点都采用全绝缘。2.1.8 主变压器的冷却方式根据主变压器的型号有:自然风冷式、强迫油循环风冷式、强迫油循环水冷式、强迫导向油循环式等。然而自然风冷却适用于7.5MVA以下小容量变压器。容量大于10MVA的变压器采用人工风冷。从经济上考虑,结合本站选用50MVA的变压器,应选用强迫空气冷却。表2-1 SFSZ7-50000/110系列电力变压器主要技术参数型号额定容量(KVA)额定电压(KV)连接组别阻抗电压(%)空载电流(%)损耗(KW)高压中压低压高低高中中低空载负载SFSZ7-50000/1105000011081.
22、25%38.522.5%10.5YN yn0 d111810.56.51.371.2250=11 =-0.5=7 (记为0)2.2 电气主接线设计2.2.1 电气主接线的设计要求变电所主接线设计是电力系统总体设计的组成部份。变电所主接线形式应根据变电所在电力系统中的地位、作用、回路数、设备特点及负荷性质等条件确定,并且应满足运行可靠、简单灵活、操作方便和节约投资等要求。主接线设计的基本要求为:(1)供电可靠性。主接线的设计首先应满足这一要求;当系统发生故障时,要求停电范围小,恢复供电快。(2)适应性和灵活性。能适应一定时期内没有预计到的负荷水平变化;改变运行方式时操作方便,便于变电所的扩建。(
23、3)经济性。在确保供电可靠、满足电能质量的前提下,要尽量节省建设投资和运行费用,减少用地面积。(4)简化主接线。配网自动化、变电所无人化是现代电网发展必然趋势,简化主接线为这一技术全面实施,创造更为有利的条件。(5)设计标准化。同类型变电所采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修。参考35110KV变电所设计规范第3.2.1条:变电所的主接线应根据变电所所在电网中的地位、出线回路数、设备特点及负荷性质等条件确定,并应满足供电可靠、运行灵活、操作检修方便、节约投资和便于扩建等要求。2.2.2 主接线选择原则 电气主接线是指发电厂或变电站中的一次设备按照设计要求连接
24、起来表示生产、汇集和分配电能的电路,也称为主电路.主接线形式于电力系统原始资料,发电厂,变电站本身运行的可靠性,灵活性和经济性的要求等密切相关,并且对电气设备的选择,配电装置布置,继电保护和控制方式的拟定都有较大的影响。电气主接线是由高压电器通过主接线,按其功能要求组成接受和分配电能的电路,组成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。主接线代表了发电厂或变电所电气部分主体结构,是电力系统的重要组成部分。它直接影响运行的可靠性、灵活性并对电器选择、配电装置布置、继电保护、自动装置和控制方式的拟定都有决定性的关系。因此,主接线的正确、合理设计,必须综合处理各方面的因素,经过技术、
25、经济论证比较后方可确定。对电气主接线的基本要求,概括地说应包括可靠性、灵活性和经济性三个方面。安全可靠是电力生产的首要任务,保证供电可靠是电气主接线最基本的要求。停电不仅使发电厂造成损失,而且对国民经济各部门带来的损失将更加严重,往往比少发电能的价值大几十倍,至于导致人身伤亡、设备损坏、产品报废、城市生活混乱等经济损失和政治影响,更是难以估量。因此,主接线的接线形式必须保证供电可靠。因事故被迫中断供电的机会越少,影响范围越小,停电时间越短,主接线的可靠程度就越高。电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换。不仅正常运行时能安全可靠地供电,而且在系统故障或电气设备检修及故障时,
26、也能适应调度的要求,并能灵活、简便、迅速地转换运行方式,使停电时间最短,影响范围最小。因此,电气主接线必须满足调度灵活、操作方便的基本要求,既能灵活地投、切某些机组、变压器或线路,调配电源和负荷,又能满足系统在事故、检修及特殊运行方式下的调度要求,不致过多地影响对用户的供电和破坏系统的稳定运行,即具有灵活性。在设计主接线时,主要矛盾往往发生在可靠性与经济性之间。欲使主接线可靠、灵活,必然要选用高质量的设备和现化的自动装置,从而导致投资费用的增加。因此,主接线的设计应在满足可靠性和灵活性的前提下做到经济合理。一般应当从以下几方面考虑:(1)投资省 主接线应简单清晰,以节省开关电器数量,降低投资;
27、要适当采用限制短路电流的措施,以便选用价廉的电器或轻型电器;二次控制与保护方式不应过于复杂,以利于和节约二次设备及电缆的投资。(2)占地面积少 主接线设计要为配电布置创造节约土地的条件,尽可能使占地面积减少。同时应注意节约搬迁费用、安装费用和外汇费用。对大容量发电厂或变电所,在可能和允许条件下,应采取一次设计,分期投资、投建,尽快发挥经济效益。(3)电能损耗少 在发电厂或变电所中,正常运行时,电能损耗主要来自变压器,应经济合理地选择变压器的型式、容量、和台数,尽量避免两次变压而增加电能损耗。2.2.3 电气主接线形式的确定目前变电所常用的主接线形式有:单母线、单母线分段、单母线分段带旁路、双母
28、线、双母线分我们在比较各种电气主接线的优劣时,主要考虑其安全可靠性、灵活性、经济性三个方面。首先,在比较主接线可靠性的时候,应从以下几个方面考虑:断路器检修时,能否不影响供电;线路、断路器或母线故障时以及母线或隔离开关检修时,停运出线回路数的多少和停电时间的长短,以及能否保证对、类用户的供电;变电站全部停电的可能性;大型机组突然停电时,对电力系统稳定性的影响与后果因素。其次,电气主接线应该能够适应各种运行状态,并且能够灵活地进行运行方式的切换。不仅正常时能安全可靠的供电,而且在电力系统故障或电气设备检修时,也能够适应调度的要求,并能灵活、简便、迅速地切换运行方式,使停电的时间最短,影响的范围为
29、最小。再次,在设计变电站电气主接线时,电气主接线的优劣往往发生在可靠性与经济性之间,欲使电气主接线可靠、灵活,必然要选用高质量的电气设备和现代化的自动化装置,从而导致投资的增加。因此,电气主接线在满足可靠性与灵活性的前提下做到经济合理就可以了。参考35110KV变电所设计规范第3.2.3条:35110KV线路为两回及以下时,宜采用桥形线路变压器组或线路分支接线。超过两回时,宜采用扩大桥形单母线或单母分段的接线形式,3563KV线路为8回及以上时,亦可采用双母线接线,110KV线路为6回及以上时,宜采用双母线接线。第3.2.4条:在采用单母线、分段单母线或双母线的35110KV主接线中,当不允许
30、停电检修断路器时,可以设置旁路设施。当有旁路母线时,首先宜采用分段断路器或母联断路器兼做旁路断路器的接线,当110KV线路为6回及以上,3563KV线路为8回及以上时,可装设专用的旁路断路器,主变压器35110KV回路中的断路器,有条件时,亦可接入旁路母线,采用断路器的主接线不宜设旁路设施。第3.2.5条:当变电站装有两台主变时,610KV侧宜采用分段单母线。线路为12回及以上时亦可采用双母线。当不允许停电检修断路器时,可设置旁路设施。综合以上规程规定,结合本变电站的实际情况,110KV侧有4回出线(近期2回,远景发展2回),35KV侧有4回出线,10KV侧有11回出线(近期9回,远景发展2回
31、)。故可对各电压等级侧主接线设计方案作以下处理:(1)110kv侧:110kv侧是本站的进线段,它对本站的可靠性有很大影响。下面拟定两种接线方案。图2-1单母分段的适用范围:(1)610kv配电装置出线回路数为6回及以上时。(2)3566kv配电装置出线回路数为68回时。(3)110kv220kV配电装置出线回路数为34回时。双母接线的适用范围当母线回路数或母线上电源较多、输送和穿越功率较大、母线故障后要求迅速恢复供电、母线或母线设备检修时不允许影响对用户的供电、系统运行调度对接线的灵活性有一定要求时采用,各级电压采用的具体条件如下:(1)610kv配电装置,当短路电流较大、出线需要带电抗器时
32、。(2)3566kV配电装置,当出线回路数超过8回时,或连接的电源较多、负荷较大时。(3)110220kv配电装置出线回路数为5回及以上时,或当110kv220kv配电装置,在系统中后重要地位,出线回路数为4回及以上时。表2-2 单母分段与双母接线比较方案项目方案I 单母分段方案II 双母接线可靠性用断路器把母线分段后,对重要用户可从不同段引出两个回路,保证不间断供电,可靠。供电可靠,通过两组母线隔离开关的倒换操作,可以轮流检修一组母线而不致使供电中断;一组母线故障后,能迅速恢复供电;检修任一回路的母线隔离开关时,只需断开此隔离开关所属的一条回路和与此隔离开关相连的该组母线,其它回路均可通过另
33、外一组母线继续运行。灵活性当一回线路故障时,分段断路器自动将故障段隔离,保证正常段母线不间断供电,不致使重要用户停电。调度灵活,各个电源和各个回路负荷可以任意分配到某一组母线上,能灵活地适应电力系统中各种运行方式调度和潮流变化的需要。综合本站实际情况,110kv级是本站的进线侧,而且不需要经常倒线操作,它对本站的供电可靠性至关重要。因此选择方案,即单母分段接线。(2)35kv侧:35kv侧是本站的一个出线电压等级,它向郊区一、郊区二、水泥厂一、水泥厂二供电。这里、级所占比重比较高。对35kv侧的主接线设计了两种方案:表2-3 单母分段与单母接线比较方案项目方案I 单母分段方案II 单母接线可靠
34、性用断路器把母线分段后,对重要用户可从不同段引出两个回路,保证不间断供电,可靠。灵活性和可靠性差,当母线或母线隔离开关故障或检修时,必须断开它所连接的电源,与之相连的所有电力装置在整个检修期间均需停止工作。此外,在出线断路器检修期间,必须停止该回路的供电。灵活性当一回线路故障时,分段断路器自动将故障段隔离,保证正常段母线不间断供电,不致使重要用户停电。图2-2单母线接线的适用范围:一般适用于一台主变压器的以下三种情况:(1)610kv配电装置的出线回路数不超过5回。(2)3566kv配电装置的出线回路数不超过3回。(3)110kv220kv配电装置的出线回路数不超过2回。根据本站实际情况,在3
35、5KV负荷中一、二类负荷比较大,发生断电时,会造成生产机械的寿命缩短产品质量下降和一定的经济损失.因此要尽可能保证其供电可靠性。因此选择方案,即单母分段接线。(3)10kv侧:对10kv侧的主接线拟定了两种方案:图2-3单母线分段接线的优缺点:优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使大面积停电。缺点:当一段母线或母线隔离开关故障或检修时,该段母线的问路都要在检修期间内停电;当出线为双回路时,常使架空线路出现交叉跨越;扩建时密向两个方向均衡扩建。双母线接线的伏缺点:优点:(1)
36、供电可靠。通过两组母线隔离开关的倒换操作,可以轮流检修一组母线而不致使供电中断;一组母线故障后,能迅速恢复供电;检修任一回路的母线隔离开关时,只需断开此隔离开关所属的一条回路和与此隔离开关相连的该组母线,其它回路均可通过另外一组母线继续运行,但其操作步骤必须正确。例如:欲检修工作母线,可把全部电源和线路倒换到备用母线上。其步骤是:先合上母联断路器两例的隔离开关,再合母联断路器QF,向备用母线充电,这时,两组母线等电位,为保证不中断供电,按“先通后断”原则进行操作,即先接通备用母线上的隔离开关,再断开工作母线上的隔离开关。完成转换后,再断开母联QF及其两侧的隔离开关,即可使原工作母线退出运行进行
37、检修。(2)调度灵活。各个电源和各个回路负荷可以任意分配到某一组母线上,能灵活地适应电力系统中各种运行方式调度和潮流变化的需要。通过倒闸操作可以组成各种运行方式。例如:当母联断路器闭合,进出线分别接在两组母线上,即相当于单母线分段运行;当母联断路器断开,一组母线运行,另一组母线备用全部进出线均接在运行母线上,即相当于单母线运行,两组母线同时工作,并且通过母联断路器并联运行,电源与负荷平均分配在两组母线上,即称之为固定连接方式运行。这也是目前生产中最常用的运行方式,它的母线继电保护相对比较简单。根据系统调度的需要,双母线还可以完成一些特殊功能。例如:用母联与系统进行同期或解列操作;当个别回路需要
38、单独进行试验时(如线路检修后需要试验),可将该回路单独接到备用母线上运行;当线路利用短路方式熔冰时,亦可用一组备用母线作为熔冰母线,不致影响其它回路工作。(3)扩建方便。向双母线左右任何方向扩建,均不会影响两组母线的电源和负荷自由组合分配,在施工中也不会造成原有回路停电。当有双回架空线路时,可以顺序布置,以致连接不同的母线段时,不会如单母线分段那样导致出线交叉跨越。(4)便于试验。当个别回路需要单独进行试验时,可将该回路分开。缺点:(1)增加了电气设备的投资。(2)当母线故障或检修时,隔离开关作为倒闸操作电器需在隔离开关和断路器之间装设闭锁装置。(3)当馈出线断路器或线路侧隔离开关故障时停止对
39、用户供电。根据本站实际情况,在10KV负荷中,印染、毛纺厂、针织厂、棉纺厂、橡胶厂、市区一、二类负荷比较大。若发生停电对企业造成出现次品,机器损坏,甚至出现事故,对市区医院则造成不良社会影响,严重时造成重大经济损失和人员伤亡,必须保证其供电可靠性。且此电压等级出线回数多,需经常倒换。因此选择方案双母接线。表24 主接线方案表110kv35kv10kv单母分段接线 单母分段双母接线第3章 短路电流的计算3.1 短路的概念及路电流的种类 3.1.1 短路的概念电力系统不可避免会发生短路事故。短路事故威胁着电网的正常运行中,并有可能损坏电气设备。因此,在电力系统的设计和运行中,都要对供电网络进行短路
40、电流计算,以便正确地选用和调整继电保护装置,正确地选择电气设备,确保电力系统的安全、可靠运行。短路的种类有以下几种:(1)三相短路。(2)两相短路。(3)两相短路接地。(4)单相短路(接地)。三相短路是对称短路,此时三相电流和三相电压仍然是对称的,只是三相电流特大。除三相短路外的其他短路都是不对称性短路,每相电流和电压数值不相等,相角也不同。3.1.2 短路电流的暂态过程和短路电流种类1短路电流的暂态过程当电力系统发生三相短路时,由于短路回路存在着电感,电流不能突变,因此有一个暂态过程。短路电流随时间变化,最后达到稳定值。短路全电流id由对称的周期分量和不对成的非周期分量两部分合成,即。周期分
41、量先开始衰减,然后逐渐增加到稳态值。非周期分量按指数规律衰减,其衰减时间常数为0.05-0.2。2计算各短路电流的目的(1) 短路冲击电流:用来校验电气设备和母线的动稳定。(2) 短路全电流最大有效值Ich(第一周期短路全电流有效值):用来校验电气设备和母线的动稳定。(3)超瞬变短路电流有效值I:用来作继电保护的整定计算和校验断路器的短流量。(4) 短路后0.2秒后的短路电流周期分量有效值:用来校验断路器的断流量。(5)稳态短路电流有效值:用来校验电气设备和载流部分的热稳定。(6) 短路后0.2S后的短路容量:用来校验断路器的遮断容量。3.2 短路电流的计算1、为了简化短路电流的计算方法,在保
42、证计算精度的情况下,忽略次要因素的影响,做出一下规定:(1) 所有的电源电动势相位角均相等,电流的频率相同,短路前,电力系统的电势和电流是对称的。(2) 认为变压器是理想变压器,变压器的铁心始终处于不饱和状态,即电抗值不随电流的变化而变化。(3) 输电线路的分布电容略去不计。(4) 每一个电压级采用平均电压,这个规定在计算短路电流时,所造成的误差很小。因为电抗器的阻抗通常比其他元件阻抗大的多。(5) 计算高压系统短路电流时,一般只计及发电机、变压器、电抗器、线路等元件的电抗,因为这些元件X/3R时,可以略去电阻的影响。(6) 短路点离同步调相机和同步电动机较近时,应该考虑对短路电流值的影响。有
43、关感应电动机对电力系统三相短路冲击电流的影响:在母线附近的大容量电动机正在运行时,在母线上发生三相短路,短路点的电压立即降低。此时,电动机将变为发电机运行状态,母线上电压低于电动机的反电势。(7) 在简化系统阻抗时,距短路点远的电源与近的电源不能合并,两个容量相差很大的电源不能够合并。(8) 以供电电源为基准的电抗标幺值3.5,可以认为电源容量为无限大容量的系统,短路电流的周期分量在短路全过程中保持不变。2、短路电流的标幺值计算法短路电流计算,根据电力系统的实际情况,可以采用标幺值或有名值计算,那种方法方便就采用那种方法.在高压系统中通常采用标幺值计算. 所谓标幺值,是实际值与基准值之比. 标
44、幺值没有单位.设所选顶定的基准值电压,基准电流,基准容量及基准电抗分别为,则这一元件的各已知量的标幺值分别为,式中:S、U、I、X-以有名单位表示的容量(MVA)、电压(KV)、电流(KA) 、电抗; 、-以基准量表示的容量(KVA)、电压(KV)、电流(KA)、电抗。工程计算上通常先选定基准容量和基准电压,与其相应的基准电流和基准电抗,均可由这两个基准值导出。基准容量可采用电源容量或一固定容量,为了计算一致,通常采用=100MVA为基准容量;基准电压一般采用短路点所在级的网路平均额定电压,即=。表31电力系统各元件阻抗值的计算公式序号元件名称给定参数电抗平均值计算公式通用式=100MVA1发
45、电机(或电动机)额定容量超瞬变电抗百分数2变压器额定容量阻抗电压百分比310(6)KV电缆平均电压每千米电抗线路长度L0.08410(6)KV架空线路平均电压每千米电抗线路长度L0.4535KV架空线路平均电压每千米电抗线路长度L0.4256电抗器额定电压额定电流电抗百分数3、短路电流的有名值计算法在有名值计算法中,每个电气元件的单位是有名的,而不是相对值。在比较简单的网路低电压电网,常采用有名值计算法计算短路电流。采用此方法计算,须将各电压等级的电气元件参数都归算到同一电压等级上来。凡涉及发电机、变压器、电动机、电抗器等元件的百分数电抗值(铭牌上一般有标出)均应换算成有名值来计算。电力系统各元件阻抗有名值的计算公式如下:(1)发电机(电动机)式中:-发电机的超瞬变电抗值;-发电机以额定值为基准的超瞬变电抗的百分数;-