1、 目录摘要Abstract1引言2 LED概 述2.1 LED的发明2.2 LED工作原理2.2.1、LED发光机理2.2.2、LED发光效率2.2.3、LED电气特性2.2.4、LED光学特性2.2.5、LED热学特性2.2.6、LED寿命2.2.5、LED热学特性2.2.7 LED光源的特点 2.3 LED照明应用的国内外现状2.3.1国内外发展现状2.3.2全球LED产业现状与发展趋势 2.4 国内外LED产业发展现状与态势呈现出的特点2.5 LED常见驱动方式 2.5.1 开关式3 开关电源概述3.1 开关电源的发展历程与现代应用3.2 开关电源与线性电源的比较3.3开关电源的优缺点3
2、.4 开关电源PWM五种反馈控制模式4反激式概述4.1反激式开关电源的工作方式分析4.2 反激式的特性特点4.3反激式与正激式变压器的区别4.4反激式开关电源变压器设计方法公式5 原边反馈概述5.1 原边反馈原理及特性5.2 原边反馈的优缺点6开关电源的几种拓扑结构6.1 Buck模型6.2 Boost模型6.3 Buck-Boost模型6.4 Flyback模型6.5 Forward模型6.6 推挽式模型7 PS2535原理及技术参数7.1 PS2535概述及原理7.2 PS2535技术参数7.3 PS2535优点及应用范围8 4W7W的LED灯PSR反激式驱动设计 8.1 4W7W的LED
3、电源原理图8.2 4W7W的LED电源PCB板8.3 4W7W的LED灯基于PSR反激式变压器设计及绕制8.4 4W7W的LED灯驱动系统电路设计8.4.1应用电路设计8.4.2 元器件清单9 4W7W的LED驱动电源动态特性测试9.1 PS2535芯片工作相关波形测试9.2 PS2535芯片在4W7W的LED驱动电源电路的动态数据9.3 恒压恒流工作实际情况数据9.4 4W7W的LED驱动电源相关缺点及优点9.5 4W7W的LED灯成品实物图总结参考文献致谢摘要本文概述了LED的发明、工作原理、LED照明应用的国内外现状,对LED的三种驱动方式:阻容降压式驱动、恒压、恒流式开关驱动进行了较详
4、细的讨论,在众多拓扑中选用Flyback电路结构并用PS2535设计了一款基于PSR反激式LED驱动,可同时用于驱动4W7W的LED灯,具有一电源多功率LED灯驱动的特性,其中反激式变压器自己设计制作。PS2535 采用固定工作频率脉冲宽度可控调制方式,于SOP-8封装形式,PS2535是用电流控制方式PWM电源控制芯片。该芯片主要特点有:不用TL341和PC817,可设计的CV和CC输出,有软启动电路,VDD的OVP功能,不需要滤波输出端电感,基于原边电流反馈。本设计采用PS2535设计一款PWM控制的,该电源同时具有恒压恒流输出的特点。效率可达85%以上,非常适合LED照明应用,充分发挥L
5、ED的发光效率高,寿命长等特点。关键字: LED PS2535 PSR 反激式 恒压恒流驱动AbstractThis paper summarizes the principle of invention, LED lighting, LED to the application situation at home and abroad, the three drivers LED resistance and capacitance step-down type: driver, constant pressure, flow switch drive discussed in detail
6、, and choosed the fly back mode to design a fundamental of Electric circuits ,the design of a PS2535 LED efficiency constant-current PWM switch power, was built on the structch of PSR,PS2535 LED efficiency constant-current PWM switch power, using fixed frequency PS2535 pulse width modulation pattern
7、s, Primary-side sensing and regulation without TL431 and Opto-coupler ,Programmable CV and CC regulation ,VDD OVP,Power on soft-start,Built-in secondary Constant Current control with primary side feedback,No need L, DsignPS2535 a PWM switch power, the power and the constant pressure, transverse driv
8、e features. Efficiency can reach more than 85, very suitable for LED lighting applications, full of leds luminous efficiency, long life, etc.Key words: LED PS2535 PSR Flyback CV and CC drive1引言LED 这几年发展较快,在大功率照明市场使用LED 越来越变为可能,虽说还不是特别成熟,最少是广众关心的话题之一,照明未来被LED 光源取代将无可置疑。受世界经济影响,都在寻找未来的新的经济增长点,投资LED 方面
9、的资金,会越来越多,加速LED 进程是必然的。LED由于环保,寿命长,光电效率高等众多优点,近年来在各行业得以快速发展,LED的驱动电源也成了关注的热点,理论上LED的使用寿命在10万小时以上,但在实际应用过程中,由于驱动电源的设计及驱动方式选择不当,使LED极易损坏,随着LED应用的日益广泛,LED驱动电源的性能将越来越适合LED的要求。本文主要概述LED的驱动方式简介及特点,用OB2535设计一款LED驱动电源及对其进行分析。2概 述2.1 LED的发明及LED光源的发展趋势发明LED的是Nick Holcnyak JR, LED的学理名称是正式发光二极体,是一种半导体固体发光器件,固体半
10、导体芯片作为发光材料,透过环氧树脂封装,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,不存在灯丝发光易烧、热沉积、光衰等缺点,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。LED照明产品就是利用LED作为光源制造出来的照明器具。LED被称为第四代照明光源或绿色光源,具有节能、环保、寿命长、体积小等特点,可以广泛应用于各种指示、显示、装饰、背光源、普通照明和城市夜景等领域。近年来,世界上一些经济发达国家围绕LED的研制展开了激烈的技术竞赛.在业界有人称LED光源为长寿灯,意为永不熄灭的灯。由于LED体积小、响应快、寿命长,LED灯具抗震动性好且小,可以提高汽车有限空间的利用率,尤其是
11、在节能问题上,LED成为前照灯新光源的不二之选。目前石油价格飞速上涨,当我们在前照明灯上使用普通灯泡时,每个所需的功率为55-60瓦,而使用LED后可能只要3-5瓦,这样就节省了许多能源和消耗。而LED灯具造型的多变不仅为前照灯的设计提供了更大的设计空间和自由度,甚至会导致汽车造型的变革,也就是可能会更具流线型、更新颖时尚。火热的LED议题成为举世焦点,那麼最早发明LED的人又是谁呢?很多人也许还不知道,在1962年发明LED的Nick Holonyak Jr.,他当时只是美国大厂通用电气公司(General Electric Company,GE,又称为奇异)的一名普通研究人员,打造出了第一
12、颗红光LED,而且他还认为未来能够发出其他波长的光,意味着LED将有很多种不同的顏色光,未来白炽灯一定会被LED取代掉。LED理论上每瓦的发光效率高达370 LM/W,在目前芯片结构不做任何改变的情况下良好的工艺让LED每瓦到达150LM没有任何问题,当达到这种亮度的时候,所有的照明领域基本上都可以替代了。预计在未来13年内LED光源将达到每瓦300流明的光效率。目前美国实验室的LED已达到了每瓦161流明的光效率,总光通量为 175 LM2.2 LED工作原理2.2.1、LED发光机理PN结的端电压构成一定势垒,当加正向偏置电压时势垒下降,P区和N区的多数载流子向对方扩散。由于电子迁移率比空
13、穴迁移率大得多,所以会出现大量电子向P区扩散,构成对P区少数载流子的注入。这些电子与价带上的空穴复合,复合时得到的能量以光能的形式释放出去。这就是PN结发光的原理。2.2.2、LED发光效率一般称为组件的外部量子效率,其为组件的内部量子效率与组件的取出效率的乘积。所谓组件的内部量子效率,其实就是组件本身的电光转换效率,主要与组件本身的特性(如组件材料的能带、缺陷、杂质)、组件的垒晶组成及结构等相关。而组件的取出效率则指的是组件内部产生的光子,在经过组件本身的吸收、折射、反射后,实际在组件外部可测量到的光子数目。因此,关于取出效率的因素包括了组件材料本身的吸收、组件的几何结构、组件及封装材料的折
14、射率差及组件结构的散射特性等。而组件的内部量子效率与组件的取出效率的乘积,就是整个组件的发光效果,也就是组件的外部量子效率。早期组件发展集中在提高其内部量子效率,主要方法是通过提高垒晶的质量及改变垒晶的结构,使电能不易转换成热能,进而间接提高LED的发光效率,从而可获得70%左右的理论内部量子效率,但是这样的内部量子效率几乎已经接近理论上的极限。在这样的状况下,光靠提高组件的内部量子效率是不可能提高组件的总光量的,因此提高组件的取出效率便成为重要的研究课题。目前的方法主要是:晶粒外型的改变TIP结构,表面粗化技术。2.2.3、LED电气特性电流控制型器件,负载特性类似PN结的UI曲线,正向导通
15、电压的极小变化会引起正向电流的很大变化(指数级别),反向漏电流很小,有反向击穿电压。在实际使用中,应选择 。LED正向电压随温度升高而变小,具有负温度系数。LED消耗功率 ,一部分转化为光能,这是我们需要的。剩下的就转化为热能,使结温升高。2.2.4、LED光学特性LED提供的是半宽度很大的单色光,由于半导体的能隙随温度的上升而减小,因此它所发射的峰值波长随温度的上升而增长,即光谱红移,温度系数为+23A/ 。LED发光亮度L与正向电流I近似成比例:K=L/I,K为比例系数。电流增大,发光亮度也近似增大。另外发光亮度也与环境温度有关,环境温度高时,复合效率下降,发光强度减小。2.2.5、LED
16、热学特性小电流下,LED温升不明显。若环境温度较高,LED的主波长就会红移,亮度会下降,发光均匀性、一致性变差。尤其点阵、大显示屏的温升对LED的可靠性、稳定性影响更为显著。所以散热设计很关键。2.2.6、LED寿命LED的长时间工作会光衰引起老化,尤其对大功率LED来说,光衰问题更加严重。在衡量LED的寿命时,仅仅以灯的损坏来作为LED寿命的终点是远远不够的,应该以LED的光衰减百分比来规定LED的寿命,比如35%,这样更有意义2.2.7 LED光源的特点电 压:LED使用低压电源,单颗电压在1.9-4V之间,比使用高压 电源更安全的电源。效 能:光效高,目前实验室最高光效已达到 161 l
17、m/w(cree),是 目前光效最高的照明产品。抗震性:LED是固态光源,由于它的特殊性,具有其他光源产品不能 比拟的抗震性。稳定性:10万小时,光衰为初始的70% 响应时间:LED灯的响应时间为纳秒级,是目前所有光源中响应时间 最快的产品。 环 保:无金属汞等对身体有害物质。颜 色:LED的带快相当窄,所发光颜色纯,无杂色光,覆盖整过可见光的全部波段,且可由RGB组合成任何想要可见光。2.3 LED照明应用的国内外现状2.3.1国内外发展现状:半导体灯作为典型的绿色照明光源,孕育出诱人的市场前景。LED应用市场的规模,2004年全球超过120亿美元;2010年全球将达到500亿美元,中国将达
18、到600亿元人民币。据中国光学光电子协会统计,国内市场将保持30%以上的成长速度。据专门对高亮度发光二极管和氮化镓的市场调研公司Strategies Unlimited的主管罗伯特.斯蒂尔表示,由于移动应用的需求巨增(手机,掌上电脑和数码相机)2004年全球高亮度发光二极管市场增长了37%增至37亿美元。斯蒂尔表示,高亮度发光二极管在移动领域的应用的收入为21.5亿美元,占了58%的市场,比2003年增长了7个百分点。不过它在标志、信号以及汽车等领域会稳健增长,会占有13%的市场。至于产品细分,斯蒂尔就表示,白光发光二极管占需求的50%,而蓝/绿光发光二极管就占29%。以生产地区来分,45%的
19、高亮度发光二极管来自台湾,韩国和中国的制造商,而25%是由美国生产。 另外,白光发光二极管在手持应用的全色彩显示背光的渗透率已经达到75%。随着移动应用趋于饱和,高亮度发光二极管的增长速度在未来几年会放缓。因此,斯蒂尔建议那些发光二极管的制造商应该集中在其它应用领域比如说汽车照明领域,更大的LCD背光和交通信号灯领域的应用上.科技部建议,在将半导体照明产业纳入国家重点发展的高新技术产业的同时,以2008年北京奥运会和2010年上海世博会为契机,推动半导体灯在城市景观照明中的应用。国家计划先从863计划和攻关计划中拿出8000亿元作为引导经费,安排一些急需上马的项目。 2003年3月,随着大连方
20、大集团“大功率高亮度半导体芯片”等我国“十五”科技攻关计划“半导体照明产业化技术开发”重大项目的正式立项,国家半导体照明工程已进入实质性推进阶段。 2003年6月17日,“国家半导体照明工程”协调领导小组召开了第一次电视电话会议。这一会议的举行,表明“国家半导体照明工程”正式启动。2004年3月22日协调领导小组又同中国照明协会中国照明电器协会联合主办了“2004年中国(上海)国际半导体照明论坛”。 接着又批准建立上海、厦门、大连、南昌四个半导体照明基地。去年4月,国家科技部确定厦门、上海、大连和南昌为首批4个国家半导体照明产业基地,今年4月深圳又成为第5个国家半导体照明产业基地。2004年深
21、圳LED产值已超过50亿元,有些企业的产值也达到10亿元,分布在上中下游产业链上的企业有300多家。到2004年全国已有LED各类企业约3500余家,从业人员50余万人,LED器件产量400亿只/年以上(LED应用产品的产量与规模则无法统计),年市场规模大于300亿人民币。国内近年许多高校、研究所和企业在发光材料器件结构封装方式等方面做了大量的研究开发工作,目前功率LED器件光通量已能达到2530lm/瓦。内地众多后道封装企业中,国内较有基础的有佛山光电、宁波升谱光电、厦门华联等企业。台湾LED封装产能在迅速的膨胀已成为世界上最大的LED生产基地,目前主要有光宝、亿光、百鸿等企业。据有关资料,
22、我国针对国外发展趋势和国内的实际情况,去年正式实施了国家半导体照明工程,政策鼓励企业研究开发半导体照明工程,尽快实现产业化,推动传统照明工程转型。2.3.2全球LED产业现状与发展趋势目前,全球有近200家公司和300多所大学以及研究机构从事氮化镓基LED的材料生长、器件制作工艺和相关装备制造的研究和开发工作,居于领先水平的公司主要有日本的Nichia、Toyota Gosei、索尼、三洋、美国的Cree Lumileds,欧洲的Osram、菲利普、中国台湾的芯片厂家主要有国联、晶元、光磊、广镓、灿元、连威等,封装方面主要有亿光电子、鼎元光电、佰鸿工业等。 这些跨国大公司多有原创性的专利,引领
23、技术潮流,占有绝大多数的市场份额,其中日本的日亚公司是全世界研究和生产LED的顶尖单位,十余年来其氮化镓基LED的研究和开发水平一直领先其它单位2-3年。日亚公司在生产白色LED的荧光粉材料方面拥有多项专利,在InGaN白色LED芯片供应上一直占统治地位,但专利技术一直控制在内部使用。Lumileds公司也已开发出最大发光功率达120 lm的白光LED,美国加州大学固态发光及显示中心计划在2007年前开发出效率为200 lm/W的白光LED。 面对半导体照明将要形成的巨大市场,世界上各半导体公司和照明公司纷纷投入巨资进军半导体照明市场,美国自2000年起投资5亿美元实施国家半导体照明计划。美国
24、能源部预测,到2010年前后,美国将有55%的白炽灯和荧光灯被半导体照明所替代,目前,世界上掌握半导体照明技术的半导体公司,都已经纷纷和老牌灯泡制造商结盟,如美国HP联合了日本Nichia和德国西门子,美国Cree、西门子和德国欧斯郎联合,美国EMCORE和GE联合,日本的东芝和本田联合等,其中欧斯郎和GE公司都是世界著名的灯泡制造巨商,通用电气、飞利浦、欧斯郎等世界三大照明巨头,全都启动大规模商用开发计划,与半导体公司合作或并购,成立半导体照明企业,他们还指出,要在2010年前使半导体灯的发光效率再提高8倍,价格降低到现在的1%。2.4国内外LED产业发展现状与态势呈现出的特点全球产业格局呈
25、现垄断局面,主要集中于日本与台湾地区半导体照明产业已形成以亚洲、美国、欧洲三大区域为主导的三足鼎立的产业分布与竞争格局。全球LED产业主要分布在日本、台湾两大地区,其中日本20052F的LED产值达287亿美元,占据全球LED产值近50,台湾(包括台湾岛内及大陆分厂生产)LED产值2305年达12亿美元,约占全球LED产值的21列第二。国际大厂引领产业发展,利用技术优势占据高附加值产品的生产日本NIchIa、ToyodaG0sel,美国Cree、Lumlleds、GelC0re、欧卅i0rsam等国际厂商代表了LED的最高水平,引领着半导体照明产品产业的发展。日本和美国两大区域的企业利用其在新
26、产品和新技术领域中的创新优势,主要从事最高附加价值产品的生产。其中日本几乎垄断全球高端蓝、绿光LED市场,为全球封装产量第二大、产值第一大的生产地区。产业投资继续加大,国际知名厂商间合作步伐加快,以占据有利市场地位随着市场的快速发展,美国、日本、欧洲各主要厂商纷纷扩产加快抢占市场份额。日本Nlcha、T0vodaG0sel,美国Cree、-umJ1eds等国际著名半导体照明厂两均加大了投资力度。随着LED产业分工与竞争的加剧,国际大厂间的参股投资、代加工、代理销售、专利交互授权、策略联盟等合作步伐正日益加快。如日本住友电工成为美国cree在日本的销售总代理、cree和0sram签署长期供货协议
27、,种种迹象表明国际厂商的合作步伐正在加快,以策略联盟共同占据有利市场地位。我国已成为重要封装基地,海内外企业纷纷投资抢占国内巨大市场自2003年买行半导体照明工程以来,我国LED产业已进八快速发展时期,我国下游封装已实现了大批量生产,正在成为世界重要的中低端LED封装基地。受国内下游应用产品巨大的制造能力及市场消费的吸引,除积极介入的民营资本外,台湾地区、香港、韩国及日本的众多投资者都已在我国投资,在提高我国的半导体照明产业技术水平和产业国际竞争力同时,也加剧了国闪市场的抢夺大战。行业发展关键驱动因素:(1)新兴市场不断形成,持续推动产业规模增长随着LED发光效率与性能的持续提升与改善,LED
28、已从指示灯、手机背光、显示屏、交通信号灯等成熟应用领域,正逐步向中大尺寸LCD背光、汽车、照明等新兴应用市场渗透应用。从市场发展情况看,中大尺寸液晶背光和汽车灯用LED正在成为增长最快的应用市场,预计未来几年高亮LED的市场仍将以14的速度增长,2009年高亮度LED市场将达到72亿美元。(2)技术创新步伐明显加快,推动L印熙明实用化进程面对巨大的市场机会,世界主要公司的新技术不断取得突破性进展,半导体照明技术创新的步伐正在不断加快。日本Nchla继2006年6月推出100mw20mA的白光LED产品后,2006年12月又开发出了150mw的实验室内照明灯用白光LED200627月Cree开发
29、出了发光效率达131mw20mA的白光LED,2007年初LumIIeds成功开发出了发光效率达115mw350mA,光通量为136Jm的大功率白光LED。可以说,白光LED进入普通照明领域的曙光已经显现。(3)联合制定检测与安全标准,规范与促进照明市场发展美日等LED发达国家已广泛联合业界相关机构与厂而,共同协商制定白光LED照明技术标准。检测标准与安全认证的制定出台,将为LED的消费使用保驾护航。如2006E8月美国能源部和北美照明工程(IESNA)联合制定固态照明技术的产业规则和标准,这些规则将是把固态照明产业带入“能源之星”计划的基础之一。“能源之星”标准计划有助于消费者认清市场上LE
30、D照明产品的能源效率和高性能,从而促进LED照明产品的采购使用。(4)传统照明巨头主动出击,垂直整合加速形成L印照明体系传统照明巨头Phps、Osram、GE等纷纷看好LED照明发展前景,均已通过外部收购或内部培植组建LED照明业务公司,并已形成LED与照明技术的垂直整合的优势体系。随着LED产业的在照明领域的快速发展,传统照明巨头也希望通过引八新光源的设计而使照明产品更富创新性。因此,LED照明和传统照明两个领域正逐步合二为一,加速形成一种新的照明商业模式,这非常有利于LED照明的迅速推广使用.2.5 LED驱动方式将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成
31、本等因素的限制时,最简单实用的方法就是采用电压式降压电源。电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。此电路的优点是:电路简单,便宜,缺点是:效率低,是非隔离式,安全性差,稳定性差。2.5.1 开关式 关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。调宽式开关稳压电源的基本原理可参见图2.4。图2.4对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流
32、平均电压值就越高。直流平均电压。可由公式计算, 即Uo=UmT1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。开关式稳压电源的原理电路AC整流滤波高频变换器调宽方波整流滤波DC取样器比较器脉宽调制振荡器基准电压控制电路 图2.5开关式稳压电源的基本电路框图如上图2.5所示交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个
33、方波电压经整流滤波变为所需要的直流电压。控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。3开关电源概述3.1 开关电源发展历史与应用力及术语开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和功率开关器件(如MOS-FET)等构成。简单的说:就是开关型直流稳压电源。开关电源把直流电源或交流电源通过它可以获得一个稳定的直流电压源。它具有效率高,
34、输出电压稳定,交流纹波小,体积小和重量轻的许多优点。获得广泛使用。 高频开关电源的发展方向是高频开关电源、小型化、使开关电源到更广阔的应用领域,尤其是在高技术领域的应用,促进高新技术产品的小型化、光。另一个开关电源的发展与应用在节约能源、节约资源和保护环境,具有重要的意义。 对开关电源中的应用,电力电子器件IGBT模块,主要用于二极管和场效应晶体管。 可控硅整流电路的电源的输入和软启动电路在一个小的应用、GTR、开关频率低驱动,逐步取代IGBT和场效应晶体管。下面是一些我在实际工作中所使用的开关电源术语 效率:电源的输出功率与输入功率的百分比。其测量条件是满负载,输入因为是交流电压实际电流值不
35、好测量,可以使用200V左右的直流串联电流表进行测量输入功率。 ESR:等效串联电阻。它表示电解电容呈现的电阻值的总合。一般情况下,ESR值越低的电容,性能越好。 输出电压保持时间:在开关电源的输入电压撤消后,依然保持其额定输出电压的时间。 启动浪涌电流限制电路:它属于保护电路。它对电源启动时产生的尖峰电流起限制作用。为了防止不必要的功率损耗,在设计这一电路时,一定要保证滤波电容充满电之前,就起到限流作用。 隔离电压:电源电路中的任何一部分与电源基板地之间的最大电压。或者能够加在开关电源的输入端与输出端之间的最大直流电压。 线性调整率:输出电压随输入线性电压在指定范围内变化的百分率。条件是负载
36、和周围的温度保持恒定。 负载调整率:输出电压随负载在指定范围内变化的百分率。条件是线电压和环境温度保持不变。 噪音和纹波:附加在直流输出信号上的交流电压和高频尖峰信号的峰值。用示波器测量其纹波幅值,通常是以mv度量。 输出瞬态响应时间:从输出负载电流产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间。 过载或过流保护:防止因负载过重,使电流超过原设计的额定值而造成电源损坏的电路。 软启动:在系统启动时,一种延长开关波形的工作周期的方法。工作用期是从零到它的正常工作点所用的时间。 电磁干扰无线频率干扰(EMLBFl):即那些由开关电源的开关元件引起的,不希望传按和发射的高频能
37、量频谱。 快速短路保护电路;一种用于电源输出端的保护电路。当出现过压现象时,保护电路启动,将电源输出端电压快速短路。 占空比;在高频开关电源中,开关元件的导通时间和变换器的工作周期之比。3.2开关电源与线性电源的比较线性电源优缺点优点 反应速度快,输出纹波较小;工作噪声低;缺点 体积大,重量大,效率较低,发热量大;开关电源优缺点优点 体积小,重量轻,效率高,最高可达99%;缺点 输出波纹达,有尖峰脉冲干扰,故障时输出电压失控升高,容易烧毁设备。线性电源和开关电源的主要区别 线性电源工作在工业频率 开关电源工作的频率很高一、线性电源的原理: 线性电源主要包括工频变压器、输出整流滤波器、控制电路、
38、保护电路等。 线性电源是先将交流电经过变压器变压,再经过整流电路整流滤波得到未稳定的直流电压,要达到高精度的直流电压,必须经过电压反馈调整输出电压,这种电源技术很成熟,可以达到很高的稳定度,波纹也很小,而且没有开关电源具有的干扰与噪音。但是它的缺点是需要庞大而笨重的变压器,所需的滤波电容的体积和重量也相当大,而且电压反馈电路是工作在线性状态,调整管上有一定的电压降,在输出较大工作电流时,致使调整管的功耗太大,转换效率低,还要安装很大的散热片。这种电源不适合计算机等设备的需要,将逐步被开关电源所取代。 二、开关电源的原理: 开关电源主要包括输入电网滤波器、输入整流滤波器、逆变器、输出整流滤波器、
39、控制电路、保护电路。它们的功能是: 1、输入电网滤波器:消除来自电网,如电动机的启动、电器的开关、雷击等产生的干扰,同时也防止开关电源产生的高频噪声向电网扩散。 2、输入整流滤波器:将电网输入电压进行整流滤波,为变换器提供直流电压。 3、逆变器:是开关电源的关键部分。它把直流电压变换成高频交流电压,并且起到将输出部分与输入电网隔离的作用。 4、输出整流滤波器:将变换器输出的高频交流电压整流滤波得到需要的直流电压,同时还防止高频噪声对负载的干扰。 5、控制电路:检测输出直流电压,并将其与基准电压比较,进行放大。调制振荡器的脉冲宽度,从而控制变换器以保持输出电压的稳定。 6、保护电路:当开关电源发
40、生过电压、过电流短路时,保护电路使开关电源停止工作以保护负载和电源本身。 开关电源是将交流电先整流成直流电,在将直流逆变成交流电,在整流输出成所需要的直流电压。这样开关电源省去下线性电源中的变压器,以及电压反馈电路。而开关电源中的逆变电路完全是数字调整,同样能达到非常高的调整精度。 开关电源的主要优点: 体积小、重量轻(体积和重量只有线性电源的2030%)、效率高(一般为6070%,而线性电源只有3040%)、自身抗干扰性强、输出电压范围宽、模块化。 开关电源的主要缺点: 由于逆变电路中会产生高频电压,对周围设备有一定的干扰。需要良好的屏蔽及接地 开关电源就是用通过电路控制开关管进行高速的道通
41、与截止将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比Hz高很多所以开关变压器可以做的很小,而且工作时不是很热!成本很低如果不将Hz变为高频那开关电源就没有意义!开关变压器也不神秘就是一个普通的变压器!这就是开关电源。 开关电源,是通过电子技术实现的,主要环节:整流成直流电逆变成所需电压的交流电(主要来调整电压)再经过整流成直流电压输出。 开关电源的结构中由于中间没有变压器和散热片,因而体积非常小。同时,开关电源内部都是电子元件,效率高、发热小。虽然,具有电磁干扰等缺点,但现在的屏蔽技术已经非常到位。
42、 开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有。简单地说,开关电源的工作原理是:1.交流电源输入经整流滤波成直流;2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;3.开关变压器次级感应出高频电压,经整流滤波供给负载;4.输出部分通轇一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对网的干扰;在功率相同时,开关频率越高,开关变匋器的体积就越小,但对开关管的要求就越高;开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需
43、要的输出;一般还应该增加一些护电路,比如空载、短路等保护,否则可能会烧毁开关电源。 以上说的就是开关电源的大致工作原理。 其实现在已经有了集成度非常高的专用芯片,可以使外围电路非常简单,甚至做到免调试。例如TOP系列的开关电源芯片(或称模块),只要配合一些阻容元件,和一个开关变压器,就可以做成一个基本的开关电源。开关电源&线性电源开关电源的主要工作原理就是上桥和下桥的Mos管轮流导通,首先电流通过上桥Mos管流入,利用线圈的存储功能,将电能集聚在线圈中,最后关闭上桥Mos管,打开下桥的Mos管,线圈和电容持续给外部供电。然后又关闭下桥Mos管,再打开上桥让电流进入,就这样重复进行,因为要轮流开
44、关Mos管,所以称为开关电源。 而线性电源就不一样了,由于没有开关介入,使得上水管一直在放水,如果有多的,就会漏出来,这就是我们经常看到的某些线性电源的Mos管发热量很大,用不完的电能,全部转换成了热能。从这个角度来看,线性电源的转换效率就非常低了,而且热量高的时候,元件的寿命势必要下降,影响最终的使用效果 。 开关电源和线性电源的区别主要是他们的工作方式。线性电源功率器件工作在线性状态,也就是说他一用起来功率器件就是一直在工作,所以也就导致他的工作效率低,一般在50%60%,还得说他是很好的线性电源。线性电源的工作方式,使他从高压变低压必须有将压装置,一般的都是变压器,也有别的像KX电源,再
45、经过整流输出直流电压。这样一来他的体积也就很大,笨重,效率低、发热量也大。他也有他的优点:纹波小,调整率好,对外干扰小。适合用与模拟电路,各类放大器等。 开关电源。他的功率器件工作在开关状态,(一开一关,一开一关,频率非常快,一般的平板开关电源频率在100200KHz,模块电源在)这样他的损耗就小,效率也就高,对变压器也有了要求,要用高磁导率的材料来做有点墨迹了,他的变压器就是一个字小效率吧据说美国最好的模块高达开关电源的效率高体积小,但是和线性电源比他的纹波,电压电流调整率就有折扣了 。简单地说,开关电源的工作原理是:1.交流电源输入经整流滤波成直流;2.通过高频PWM(脉冲宽度调制)信号控
46、制开关管,将那个直流加到开关变压器初级上;3.开关变压器次级感应出高频电压,经整流滤波供给负载;4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的.交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源。开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线形电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。与线性电源相比,PWM开关电源更为效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组数。最后这些交流波