高速铁路专网设计与优化.doc

上传人:精*** 文档编号:835813 上传时间:2023-09-07 格式:DOC 页数:33 大小:4.09MB
下载 相关 举报
高速铁路专网设计与优化.doc_第1页
第1页 / 共33页
高速铁路专网设计与优化.doc_第2页
第2页 / 共33页
高速铁路专网设计与优化.doc_第3页
第3页 / 共33页
高速铁路专网设计与优化.doc_第4页
第4页 / 共33页
高速铁路专网设计与优化.doc_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、目录一、摘要4关键字:4二、课题研究背景42.1 铁路提速42.2 CRH简介4三、高铁专网设计方案53.1专网设计目标53.2列车穿透损耗测试53.2.1 T型列车测试63.2.2 K型列车测试63.2.3庞巴迪列车测试73.2.4 CRH2测试83.2.5测试小结83.3重叠覆盖距离估算93.3.1 手机重选与切换93.3.2列车时速与重叠覆盖距离93.4传播模型采用103.4.1传播模型简介103.4.2传播模型校正原理及方法103.4.2.1 SPM校正原则113.4.2.2 SPM校正流程113.4.3传播模型应用133.5话务模型分析173.5.1列车话音业务估算方法173.5.2

2、列车数据业务估算方法193.6天线选择233.7站台与大网的衔接24四、高铁专网组网方案254.1专网小区组成254.1.1已建宏站采用方案254.1.2 新增宏基站建设方案264.1.3直放站方案264.2专网吸收周围大网话务预估274.3各厂商BSC承载能力284.4 BSC归属和LAC/RAC设置原则294.5切换关系设置原则31五、高铁专网优化方案315.1专网频率规划原则315.2专网信道配置原则325.3小区参数设置原则335.4切换参数设置原则33六、技术方案总结34一、 摘要自铁道部实施第6次铁路大提速后,为了保证用户在提速后的通信质量保持不变甚至有所提高,我们针对列车的材质,

3、行驶速度,用户行为,基站覆盖等特点,在前期完成了铁路沿线主覆盖小区摸底,列车穿透损耗测试,传播模型校正,话音数据业务预测等前期准备工作的前提下,提出了高速铁路专网设计与优化的技术方案,此方案包括专网设计,专网组网和专网优化等内容。在此基础上,对铁路专网规划,和后期优化调整形成指导思想,并将关键技术和指导原则应用于沪宁铁路(上海段)专网覆盖建设中,以此表明该技术方案对于铁路专网建设具有指导性,实用性和有效性。关键字:高速铁路、穿透损耗、传播模型、话务模型、网络规划、网络优化二、 课题研究背景2.1 铁路提速随着城市经济的发展,铁路运输系统承担起越来越多的客流运送任务。自2007年4月18日起,中

4、国铁道部将进行第6次列车提速。届时,列车时速将提升至200公里,而京哈、京沪、京广、胶济等提速干线部分区段可达到时速250公里。2.2 CRH简介在本次铁路提速的同时,铁道部引入了CRH这一新型列车,该列车全称为“中国高速铁路列车”,CRH是(ChinaRailwayHigh-speed)英文字母的缩写。该列车分为CRH1、CRH2、CRH3和CRH5这4个种类,其中,CRH1、2、5均为200公里级别(营运速度200KM/h,最高速度250KM/h)。 CRH3为300公里级别(营运速度330KM/h,最高速度380KM/h)。而CRH2具有提升至300KM级别的能力。表1:CRH列车基本信

5、息表列车类型运营速度最高速度载客人数列车长度列车材质CRH1200KM/h250KM/h670213.5M不锈钢CRH2200KM/h250KM/h610201.3M中空铝合金车体CRH3330KM/h380KM/h暂无200.0M暂无CRH5200KM/h250KM/h604205.2M中空铝合金车体注:上海目前行驶的CRH为CRH2型。三、 高铁专网设计方案3.1专网设计目标列车提速后的手机用户进行通信时,由于受到高速移动过程中的快衰落、多普勒效应、列车材质对无线信号衰减以及无主力覆盖小区的影响,往往容易发生切换混乱,无法接通,掉话等现象。另外,铁路沿线涉及的位置区过多,在LAC边界处又会

6、由于大量位置更新而造成SDCCH溢出。因此,铁路专网设计的目的是在确保列车内电平强度达到-85dBm以上的情况下,解决上述问题,提高通信质量。3.2列车穿透损耗测试高铁专网设计中,首先要对各列车类型作相关的穿透损耗测试,以穿透损耗最大的车种作为设计基础,来确保用户在各种车型中都可以获得正常的通话电平值。为此,我们对铁路上海段行驶的T型列车、K型列车、庞巴迪列车和子弹头CRH2型列车逐一做了相关测试工作。其中测试发信工具采用爱立信发信设备、定向天线支架和衰减器,该设备安装在列车外空地上;测试收信设备采用SAGEM OT290,该设备将在车厢外及车厢内多点处进行接收采样,从而比较出车厢内外的电平值

7、差异。3.2.1 T型列车测试图1:T型列车测试平面图表2:T型列车测试结果车厢类型位置接收电平(dBm)衰耗值(dB)硬座车厢a点-600a1点-7515b点-600b1点-611b2点-7212c点-610c1点-610c2点-7413T型列车车窗比较大,车窗玻璃衰耗很小,衰耗约为 2dBm;车内综合衰耗(人体、座椅等)约为10dB;播音室损耗16dB。3.2.2 K型列车测试D图2:K型列车测试平面图表3:K型列车测试结果位置 接收电平(dBm)衰耗值(dB)硬座车厢A点-600A1点-7616D点-8020B点-610B1点-632B2点-7211C点-620C1点-642C2点-74

8、12软卧车厢E点-610E1点(门开)-676普通K型列车窗玻璃衰耗约为3dB;车内综合衰耗(人体、固定物)约为10dB;值班室或播音室衰耗约为16 dB;卧铺车厢车体衰耗约为7dB,卧铺车厢门衰耗约为7dB。3.2.3庞巴迪列车测试图3:庞巴迪型列车测试平面图表4:庞巴迪型列车测试结果车厢类型位置接收电平(dBm)衰耗值(dB)软卧车厢A点-530C点-7017F点(门开)-7421F点(门关)-7724B点-520D点-7220E点(门开)-7624E点(门关)-7927庞巴迪车体衰耗约为17 dB,车厢内空间衰耗约为4 dB(相比T和K型列车,车厢内的人非常少),卧铺车厢门衰耗约为3 d

9、B。3.2.4 CRH2测试图4:CRH2型列车测试平面图表5:CRH2型列车测试结果车厢类型位置接收电平(dBm)衰耗值(dB)软座车厢A点-490C点-501E点-6011B点-530D点-552F点-629车体衰耗约为1dB,通过模拟测试发现CRH列车车体基本没有损耗。车厢内空间衰耗约为10 dB(相比T和K型列车,损耗也较小)。3.2.5测试小结通过对上述4种类型的列车进行穿透损耗测试,可以发现新型CRH列车的穿透损耗未高于庞巴迪列车,因此上海段的专网设计中,假如要求车厢内提供用户通信的电平值要达到-85dBm以上,则列车车厢外的覆盖电平需达到-60dBm。表6:各车型穿透损耗总结车型

10、普通车厢(dB)卧铺车厢(dB)播音室中间过道(dB)综合考虑的衰减值T型列车121612K型列车13141614庞巴迪列车2424CRH2列车1010专网设计采用值24注:铁路上海段目前行驶的CRH仅为CRH2型,其它类型的CRH穿透损耗需按实际情况重新测试。3.3重叠覆盖距离估算3.3.1 手机重选与切换在GSM通信事件中,小区重选与小区切换需要一定的时间来完成接续工作。其中小区重选规则中,当手机测量到邻小区C2高于服务小区C2值且维持5秒钟,手机将发起小区重选,若在跨位置区处,则邻小区C2必须高于服务小区C2与CRH设置值的和且维持5秒钟,手机发起小区重选和位置更新。而在小区切换过程中,

11、通常测量报告在经过设定的SACCH窗口值平滑后,经BSC判断,将发起小区切换,而整个切换的时间取决于SACCH的设置值,该值通常设为8。表7:小区重选与小区切换通信事件满足条件估算时长小区重选C2(邻)C2(服务)且时间达到5秒5秒位置更新C2(邻)C2(服务)CRH(服务)且时间达到5秒5秒小区切换rxlev(邻)rxlev(服务)且时间达到给定的SACCH设定值小于5秒3.3.2列车时速与重叠覆盖距离我们在研究专网小区重叠覆盖区域的同时,假定重叠区域覆盖是均匀的。在左图中,点A、C和点B、D分别是两个小区的边界,E点为两小区RxLev等值点。BC段为两小区重叠覆盖距离。取小区重选与小区切换

12、较长的时间(5秒钟)作为计算基础,若列车由小区1行驶至小区2,则列车在EC段之内必须完成小区重选或小区切换,因此重叠覆盖距离BC段的列车行驶时间为10秒钟,按照公式:在列车在市区时的进站和出站时由于是变速行驶,我们给出的平均速率为180KM/h,折50M/s;在列车均速行驶时,按照其运营速率200KM/h,折算等于55M/s;按照其最大速率250KM/h,折算等于70M/s。因此专网小区的最小重叠覆盖距离为市区内平均330M,市区按运营速率计算为550M,按最大速率计算为700M。表8:专网小区重叠覆盖距离区域市区内市区外运营速率最大速率最小重叠距离500M550M700M建议设计的重叠距离6

13、00M660M840M3.4传播模型采用在无线规划中,采用合适的传播模型可以准确地预估所需要的基站数量以及覆盖强度,而在铁路专网的设计中,我们采用的传播模型是ALCATEL A9155 V6中的标准传播模型(SPM模型)。3.4.1传播模型简介ALCATEL A9155 V6中的标准传播模型(SPM模型)以COST231-Hata经验模型为基础,可用于150-2000MHz的无线电波传播损耗预测,作为无线网络规划的传播模型工具,具有较好的准确性和实用性。SPM传播模型SPM模型的数学表达形式是: (式1)表9:SPM模型各系统含义系数说明默认值K1频率相关因子12.4K2 距离衰减因子44.9

14、K3基站发射天线有效高度相关因子5.83K4衍射计算相关因子0K5发射天线有效高度和传播距离相关因子-6.55K6移动台接收天线有效高度相关因子0Kclutter地貌相关因子1表10:SPM模型默认值参见表1参数含义量纲d发射点到接收点的直线距离mHeff基站天线有效高度mDiffraction衍射损耗dBHmeff移动台天线有效高度m3.4.2传播模型校正原理及方法在无线网络规划中,通常使用经验的传播模型预测路径损耗中值,不同的模型可应用于不同的无线场景。在这些模型中,影响电波传播的一些主要因素,如收发天线距离、天线相对高度和地型地貌因子等,都作为路径损耗预测公式的变量或函数。但是实际的无线

15、环境千变万化,因此传播模型在具体应用时,需要对模型中各系数进行必要的修正,从而找到合理的函数形式,这个过程就是传播模型校正。3.4.2.1 SPM校正原则尽管SPM模型的各个因子都是可以进行校正的,但在实际应用中由于所能采集的数据有限,并且在特定应用场合中所关注的因子并不相同,因此模型校正的总原则是:对于特定应用场景,对重点相关因子进行修正。K1是与频率相关的因子,对于GSM 900M或1800M,可以取默认值12.4。K2是反映模型校正区域内总体无线环境特征的参数,能普遍适用于模型校正区域。如果应用场景属于K2对应的无线环境,K2可以取相应的默认值。K3是与天线有效高度相关的因子,由于天线挂

16、高在测试过程中保持不变,而且测试的距离通常在3km范围内,天线覆盖区域内的地形变化通常并不明显。因此在整个测试过程中K3对模型的准确性影响较小,不建议对K3进行校正。K4是与衍射计算相关的因子。如果测试区域内,圆锥体(劈尖)或圆柱体物体(建筑)所占比例较少,边缘绕射或曲面绕射对总场波传播的损耗有限,因此建议K4取为0。K5是对K2和K3两个影响因子的综合,建议取默认值。K6是与移动台天线有效高度相关的因子。类似于K3因子,不建议K5进行校正。Kclutter是地形地貌因子。无线网络规划的对象之一是不同的无线环境,而无线环境的表现载体是丰富的地形地貌。现阶段对GSM传播模型校正的主要任务集中在K

17、clutter的确认和修正。3.4.2.2 SPM校正流程 测试数据采集模型校正结果的准确性很大程度上依赖于路测采集数据的可靠性。数据采集的原则包括:(1)测试采集数据应至少包括经度、纬度和场强信息。(2)测试采集数据应当能很好地反映测试信号的中值,避免因采集数据中所包含的快衰落未被滤去而影响校正的准确性,并注意测量数据的突然变化。(3)单位时间、单位距离内的采样点数可参考李氏定理。(4)移动台接收天线高度为1-2m,接收机及GPS采用外接天线置于车顶,以避免因测试车与基站相对位置的不同而导致的车体损耗差异及人体损耗。(5)隧道或桥梁等特殊场景的数据应进行标记,便于事后筛选。(6)与本地地貌明

18、显不符的地方应进行标记,便于事后筛选。(7)当接收信号不满足以下条件时,测试不应当再向远处延伸。接收信号-接收机灵敏度10dB接收信号-底噪20dB 数据预处理由于数据采集设备测到的场强数据为信号的瞬时值,其中包含着快衰落成分,需要进行数据预处理。当接收机距离发射机比较远时,接收信号强度很低,因接收机灵敏度的影响,其测量值往往不准确;对于测试信号,底部噪声在远端接收信号中的比例比较大,不利于模型校正,所以远端的测试点应予以去除。当接收机位于基站附近时,由于受天线垂直方向图的影响,接收信号的功率主要受到基站附近建筑物和街道走向的影响,因此离基站很近的测试数据不能用于传播模型校正。在测试过程中,由

19、于人为失误或设备故障,可能会出现偏差很大的测量数据,另外由于测试中行车路线受路况限制,可能偏离测试方案预定的测试区域。为了防止这些数据对模型校正的影响,在模型校正之前应予以滤除。数据预处理可以采用算术平均法,对于经纬度信息相同的场强数据,求算术均值;也可以采用统计平均法,对于经纬度信息相同的场强数据,采用中值作为测试数据。另外,由于GPS设备信息更新的速度有限。如果在同一GPS上聚集了大量的数据,可以对得到的测试数据在两个相邻的GPS信息点上进行插值处理,将测试到的数据平均分配到相邻的GPS信息点的连线上。 传播模型校正方法在铁路专网设计中,模型校正主要是对地形地貌因子Kclutter进行校正

20、。为了便于说明问题,当基站天线有效高度(Heff)和移动台天线有效高度(Hmeff)确定后,SPM模型可以表示为: (式2)其中,当C2已知,C1得到校正值后,即能计算出地形地貌因子(Kclutter)的校正值。如果借用最小二乘法对C1进行校正,则根据式2的表达形式,对于一组有效的测试数据Li(i=1,2,N)和di(i=1,2,N),有: (式3-1) (式3-2)使得L的预测误差最小。3.4.3传播模型应用考虑到地貌的纯粹度,以及避免测试过程中建筑物阻挡等影响,在沪宁铁路(上海段)沿线原有站点中选择符合地貌测试要求的3个站点(分别是锦星、翔黄和红湖基站),进行实地测试。表11:传播模型校正

21、实测点站点序号站址经度纬度天线挂高(m)EIRP1锦星121.3920431.2626822945.752翔黄121.2941231.287671545.753红湖121.15931.303263245.75其中基站EIRP=发射机输出功率(41.1dBm)-馈线损耗(3.5dB)+天线增益(8.15dB),计算结果为45.75dBm。表12:测试设备工具名称型号厂家发射机IFR 2025 signal generatorIFR接收机E6474A(software)E6455C(hardware)Agilent天线K751664kathrein馈线1/2”数字地图20m*20mGPSGARMI

22、N X21笔记本电脑Dell D610测试结果描述测试中一共测试了三个点:锦星、翔黄和红湖。在具体的测试路线选择以及数据的采集上都达到了要求,路线基本在所需测试地貌内,地貌所需数据量也足够用于分析,最后的校正结果也达到了起初的目的,能根据测试地区的地貌情况,给出了一个推荐的数据。以下是这次测试的一个总体分析。各个站点的路测结果分别如下图所示:图5:模型校正路测图对测试所经过的采样点进行统计,本次测试共3个站点,采样点一共有27038个(经纬度信息相同的场强数据进行统计平均),其中地貌“空旷市区(urban open area)”所收集到的采样点占总数据的62%,其他各种地貌所占的采样点都在6%

23、左右,如下图所示。前以提级,本次模型校正主要针对urban open area地貌因子进行校正。表13:模型校正采样点地貌类型采样点数water199sea0wet_land2012suburban open area1879urban open area16797green_land1215forest0high_buildings(height40m)27ordinary regular buildings(heights 40m-20m)190parallel regular buildings(heights20m)1059irregular large(h20*40m)1789irr

24、egular buildings(height40m)-1-2ordinary regular buildings(heights 40m-20m)-3-6parallel regular buildings(heights20m)-6-8irregular large(h20*40m)-11-4irregular buildings(height20m)-8-8suburban village-14-14park-15-15将模型校正结果用于各个测试站点,得到校正后的预测值,校正前后的实测值和预测值对比图如下所示,其中红线是实测数据,蓝线为预测值:图6:红湖基站校正前后实测和预测值对比图7:

25、翔黄基站校正前后实测和预测值对比图8:锦星基站校正前后实测和预测值对比综上,通过衡量误差和均值两个指标,校正后的模型达到了预期校正的目的,校正后地貌“空旷城市区(urban open area)”的地貌损耗为-20dB。3.5话务模型分析通过模型校正及覆盖以预测后,我们可以知道在给定的区域内需要建设专网小区的最小数量,而这些小区所需要的载频配置数将是本节的研究重点。3.5.1列车话音业务估算方法列车用户对专网小区产生的话务不同于普通宏站,由于同一铁路上一个小时内行驶的列车数量是有限的。列车用户带来的话务量为每班列车话务量乘以一小时内通过的列车班次数。为了保证专网小区的话音不溢出,就需要保证每班

26、列车在某一专网小区下通话而不产生溢出。在进行铁路专网设计时,我们采用两种方法进行列车话音业务预估,并推荐使用信令分析话务预估的方法进行分析。 ERL B表法CRH的标准配置为8节车厢,额定载客人数为600人次,但目前也有加长型CRH配置,即由2列CRH合并组成16节车厢,这样用户人数就达到1200人(T型与K型列车通常编组14节,额定人员也是1200人)。按照目前移动客户渗透率65%计算,则这样一班CRH的移动用户为780人。以每用户0.02ERL计算,则将带来15.6ERL话务,查ERL B表(1%呼损)可得需要25个TCH,考虑到GPRS业务,专网小区至少配置5TRX。爱尔兰B表法计算简便

27、,但是由于专网内的话务均在列车驶入后突发产生,因此仅参考爱尔兰B表的数据将产生载频设计偏差。 信令分析话务预估法(推荐)信令分析法的原理是在专网建设完成前,我们在铁路段市郊边界的跨LAC点取一个主覆盖铁路的专网小区。可以认为当列车进入市区后,乘客意识到自己肯定不是漫游了,就会适当的多打电话给家人,因此该小区的话务分析具有典型性。当列车穿越位置区时,可以看到边界小区因手机位置更新必然会瞬时产生大量SDCCH请求,那么我们认为这个时间点是列车进入小区的起始点。然后采集小区话务量变化和占用TCH信道个数的变化来推算列车旅客带来的影响。以上海地区为例,我们对BSC36_5下的建华_1小区进行了信令跟踪

28、,然后分析1小时内所有由江苏驶入上海站的列车产生的话务量。表15:建华_1的TCH变化情况列车通过时间13:13:2813:14:4813:22:0813:23:2813:31:1813:31:3814:03:3814:04:58小区的TCH占用总时长(列车进入)(s)1200100211581272小区的TCH占用总时长(列车未进入)(s)740520680780小区的TCH占用总话务量(列车进入)(Erl)0.3330.2780.3220.353小区的TCH占用总话务量(列车未进入)(Erl)0.2060.1440.1890.217小区的TCH占用总话务增量(列车进入前后)(Erl)0.1

29、280.1340.1330.137平均每辆列车贡献的话务量(Erl)0.133经过计算,在列车通过该小区的时间段内的TCH占用总时长为4632s, 总话务量为1.286Erl;在没有列车开过的相同时间段内的TCH占用总时长为2720s,总话务量为0.755Erl。通过以上两组数据我们可以得到测试时间段内平均每辆列车带来的总TCH话务量约为0.133ERL。而对TCH占用数据的分析,我们也可以得到该小区瞬时的TCH占用数为12个信道。因此,建议的专网小区配置为4TRX。另外,考虑到站台及位置区边界小区需要一定的SDCCH信道作位置更新,这些小区的载频配置建议值为6。图9:建华_1小区瞬时TCH占

30、用数3.5.2列车数据业务估算方法在铁路专网设计中,全程除了语音业务外,还需要提供数据业务覆盖,而由于PDCH的设置会占用TCH信道,因此通过分析列车用户数据业务模型,进行得出相关的PDCH设置方法是十分重要的。现有的关于数据业务容量规划的方法很多,但一般都是把数据业务折合成话务量(Erlang)后来计算PDCH的数量。这种计算方法的局限性在于没有充分考虑GPRS/EDGE数据业务的特殊性,如PDCH信道的共享特性,数据业务允许适当的延时和重传特性等等。在沪宁专网无线网络规划中,需要根据专网中某一小区在火车经过时可能引起突发的GPRS/EDGE用户数量、激活用户数、单位用户吞吐量、数据重传比例

31、和每PDCH信道承载速率几个要素来计算专网小区所需要配置的PDCH数量。铁路专网小区的数据业务特点是均值和峰值相差很大,并且大部分数据业务都具有突发性,因此根据网络一小时的话务报告(平均统计值)不能客观反映用户的行为,更不能正确指导PDCH信道配置。为了准确调查列车对铁路沿线小区数据业务容量的影响,一种可行的方法是通过信令跟踪与分析估计列车上GSM用户数,然后再采用渗透率法来预测GPRS/EDGE数据用户,并而计算出每小区需要提供的净PDCH数。具体步骤如下:(1)根据GPRS/EDGE各种编码方式的数据结构和话务模型,计算PDCH信道的实际承载速率。IP层的用户数据在经由PDCH无线信道传输

32、之前需要分别由SNDCP、LLC、RLC/MAC封装打包,同时要增加数据包头和校验比特等开销。手机与核心网络在数据传输过程中一般依据Um接口无线信号质量的反馈选择合适的编码速率,即发生CS/MCS切换。因此在数据传输过程中,IP层承载速率也随着空口编码速率的变化而变化。GPRS/EDGE各种编码方式下实际的IP层有效速率如下表一所示。表16:各编码方式的承载速率GPRS/EDGE编码方式调制方式PDCH承载速率(kbit/s)IP层有效速率(kbit/s)CS1GMSK9.055.58CS213.48.31CS315.69.89CS421.413.95MCS1GMSK8.87.02MCS211

33、.29.76MCS314.811.43MCS417.613.33MCS58PSK22.416.67MCS629.621.05MCS744.829.63MCS854.436.36MCS959.238.1(2)根据GPRS/EDGE的话务模型和铁路沿线某一小区实测GSM用户数,用渗透法预计激活数据业务用户数,并且对数据业务成熟开展后进行预计。通过信令跟踪实测某列车进入上海某小区覆盖范围时,在短时间内出现的大量位置更新请求次数。每隔10s对该小区出现的位置更新请求(Channel Required(Establish Cause:Location Update)数量进行了统计,一直到位置更新请求数量

34、下降到闲时水平,则认为该趟列车离开了该小区的覆盖范围。在统计时段内位置更新请求数量的突发增量,可算作一列列车上GSM用户数。GPRS/EDGE数据用户的预测多采用渗透率法,即引入一个渗透率参数,定义为:GPRS/EDGE渗透率=GPRS/EDGE登记用户数GSM用户数现取值为0.1;GPRS/EDGE的数据业务量来源于实际使用该业务的用户,定义为激活用户,并引入一个激活率参数,即GPRS/EDGE激活率=GPRS/EDGE 激活用户数GPRS/EDGE登记用户数现取值为0.14。如果该小区突发位置更新请求次数为2600,可大致估计出该列车中GPRS /EDGE激活用户数为:2600(GSM用户

35、数)0.1(GPRS/EDGE渗透率)0.14(GPRS/EDGE激活率)=37人(3)根据GPRS/EDGE用户数和每用户的数据业务平均吞吐量,计算出每小区的IP层有效吞吐量。每数据用户的平均吞吐量需要结合各种数据业务的渗透率,业务的渗透率是指在所有用户中使用该项业务的比例。数据业务按按业务功能可分为:通信类、信息类、效率类、商务类、娱乐类等几类。根据现有数据网络各种业务,统计RLC层的流量和激活用户数,结合无线链路层带来的协议开销在5%左右,可得到平均每数据用户业务量。现阶段GPRS/EDGE属于起步阶段,综合各项数据业务开展情况,估算单位用户的平均IP层业务量为400bit/s。(4)根

36、据每小区的IP层吞吐量和每PDCH信道实际承载速率,计算系统需要提供的净PDCH数。通过PDCH的利用率,计算系统需要提供的PDCH数。为配置小区合理的PDCH数,需要计算每PDCH的平均IP层承载速率,GPRS用户采用CS1-CS4编码速率,EDGE用户采用MCS1-MCS8编码速率,根据各种编码方式的使用比例,可得到每个PDCH的平均IP层承载速率。IP层承载速率=;为各CS编码方式占总数据业务量(GPRS业务量+EDGE业务量)的比例;为各MCS编码方式总数业务量(GPRS业务量+EDGE业务量)的比例;为相应CSi(i=1,2,3,4)编码方式对应的IP层有效数据速率;为相应MCSi

37、(i=1,2,8)编码方式对应的IP层有效数据速率;例如,在沪宁铁路专网建设中,测得某专网小区在1小时内的RLC层数据业务流量如下: 表17:RLC层数据流量上行下行编码方式RLC层流量(bit)占用比编码方式RLC层流量(bit)占用比CS15573784253.55%CS13776458614.30%CS23091312429.70%CS216140489861.12%CS347057204.52%CS3122163504.63%CS413141131.26%CS479988353.03%MCS118227741.75%MCS17169280.27%MCS225185892.42%MCS2

38、119789364.54%MCS37949380.76%MCS330451661.15%MCS462850696.04%MCS4107444534.07%MCS515550480.59%MCS641671471.58%MCS753579402.03%MCS871413752.70%可以计算得到,该小区上行PDCH的平均IP层承载速率为7.33kbit/s,下行PDCH的平均IP层承载速率为9.91kbit/s。根据小区单位PDCH的平均IP层承载速率和平均IP层吞吐量,并定义:小区GPRS/EDGE用户的平均IP吞吐量GPRS/EDGE激活用户数平均每用户IP吞吐量。小区所需PDCH信道数量小

39、区IP吞吐量单位PDCH的IP承载速率。因此可计算并根据实际情况得到该小区的PDCH配置数。表18:PDCH配置结果含开销的每用户平均IP业务量(bit/s)400GPRS/EDGE用户渗透率0.1GPRS/EDGE用户激活率0.14小区内GSM用户数2600小区内GPRS/EDGE激活用户数36.4小区内所有用户的平均IP吞吐量(kbit/s)14.56每PDCH信道的IP层承载速率(kbit/s)9.91小区内所需的净PDCH信道数量1.5PDCH利用率0.7小区实际需要的PDCH数量2小区实际PDCH最终配置4(5)根据实际网络数据业务的发展状况和实际小区的配置来选择合适的经验配置建议。

40、需要结合小区TRX、TCH和SDCCH 的配置,分析引入PDCH对TCH 的影响。如果GPRS/EDGE业务没有采用专用的网络承载,则还需要考虑语音业务信道转换成PDCH后所剩余的TCH 信道能否仍能满足语音业务的正常要求。如果不能满足,则还需进行相应的扩容。可以根据呼损查ErlangB表,得到对应于载频和时隙的理论上的最大可以承载的话务量。引入PDCH对TCH的影响见下表,可以看出随着PDCH数量的增加,可支持的语音话务量逐渐减少。表19:PDCH配置对TCH影响TRXSDCCH信道数TCH+PDCH信道数PDCH信道数增加后可支持的语音话务量(ERL)012345671 TRX262.28

41、1.661.090.6020.2230.02002 TRX2148.27.46.615.845.084.343.632.943 TRX22214.914.0413.1812.3311.4910.669.839.014 TRX32921.0420.1519.2618.3817.516.6315.7614.95 TRX33728.327.326.425.524.623.722.821.936 TRX34535.634.733.832.831.93130.129.27 TRX45242.141.239.338.437.536.535.634.78 TRX46049.648.747.846.845.9

42、44.94443.13.6天线选择由于铁路属于狭长地形场景覆盖,并且专网小区基站根据实际地理条件与铁路沿线可能有一定距离,因此根据实际情况需要选择不同的天线。如果专网基站与铁路沿线的垂直距离小于100米,为避免越区覆盖,优先采用32度窄波束天线(如ODP-032R18dB),并且每个小区使用两副天线对铁路实施覆盖。具体见示意图。为保证一定的覆盖距离(暂定为750米),在基站中心两侧总长度为L(L240米)的范围内将主要通过天线的副瓣进行主力覆盖。如果专网基站与铁路沿线的垂直距离较大但不超过300米,可采用65度波束天线(如ODP-065R15dB)。覆盖方式同上,但整个覆盖范围内基本上依靠天线主瓣对铁路沿线进行主力覆盖。

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 学术论文 > 毕业设计

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922