1、装订线安徽工业大学 毕业设计(论文)说明书 摘 要无刷直流电动机的最本质特征就是没有机械换向结构,取而代之的是逻辑电路和功率开关线路共同组成的电子换相器,它把直流电逆变成交流电并按一定的次序通入电动机的定子绕组中以产生与定子磁场正交的转子磁场。在使用中无刷直流电机相比有刷电机有许多的优点,比如:能获得更好的扭矩转速特;性高速动态响应;高效率;长寿命;低噪声;高转速。本文主要研究了无刷直流电机调速系统的基本方法,主要内容有无刷直流电机的基本原理,脉宽调速系统的原理和控制方法,在此基础上重点研究了无刷直流电机的换相控制,并对无刷直流电动机调速系统进行设计。最后利用MATLABSimulink面向电
2、气原理结构图的仿真技术,设计了一个转速单闭环无刷直流电机可逆脉宽调速系统,对其进行仿真,并根据仿真结果分析研究无刷直流电动机。关键词:调速,PWM控制,无刷直流电动机,仿真AbstractHaving no mechanical converter is Brushless DC motor essential feature.The structure is to replaced by a logic and power switching circuit composed of electronic commutator, which invert the direct current
3、into alternating current according to certain reverse the order of access motor stator windings in order to generate the rotor magnetic field orthogonal to the stator magnetic field. Compared to traditional DC motor, Brushless DC motor has many advantages, such as: access to better torque speed char
4、acteristics; of high-speed dynamic response; high efficiency; long life; low noise; high speed. This paper mainly studies the basic method of brushless DC motor speed control system, the main contents of this paper are including the basic principles of Brushless DC motor, PWM Speed Control System an
5、d the control method, and brushless DC motor speed control system design. Finally, MATLAB Simulink - Electric-principle-oriented for the simulation technology is used in design a single closed loop brushless DC motor speed reversible PWM speed control system, then simulate the system, and analyse th
6、e simulation results in order to research the feature of BLDCM.Key words: speed regulation, PWM control, BLDC motor, simulation目 录第一章 引言1.1无刷直流电机发展简介.41.2无刷直流电机调速系统的研究现状和未来发展.51.3 本设计的主要内容.5第二章 无刷直流电机原理 2.1 无刷直流电机的概述.72.2 电动机本体.82.2.1 定子92.2.2 转子92.2.3 有关电机本体设计的问题.102.3 转子位置检测.102.3.1 位置传感器法.112.3.2
7、 无位置传感器法.122.4 PWM技术142.5无刷直流电机电子换相器.162.6 无刷直流的基本方程.18第三章 无刷直流电动机调速系统的设计3.1 主电路供电方案.223.2主电路形式的选择.233.3基于MC33035的无刷直流电机控制系统.243.3.1MC33035无刷直流电机控制芯片.243.3.2基于MC33035的无刷直流电动机调速系统设计方案.26第四章 直流脉宽调速系统的MATLAB仿真4.1电源、逆变桥和无刷直流电机模型.274.2换相逻辑控制模块.294.3控制器和控制电平转换及PWM发生环节.344.3.1起动,阶跃负载仿真.364.3.2可逆调速仿真.39总结.4
8、1参考文献.42致谢.43第一章 引言1.1 无刷直流电机发展简介目前国内外对无刷直流电机的(Brushless DC Motor,BLDCM)的定义有两种:一种是认为只有梯形波/方波无刷直流电机才可被称为无刷直流带电机,而正弦波无刷直流电机则被称为永磁同步电机(Permanent Magnet Synchronous Motor,PMSM);另一种定义认为梯形波/方波无刷直流电机都是无刷直流电机。本论文采用第一种定义,仅认为反电动势波形为梯形波/方波的无刷直流电机称为无刷直流电机。电动机作为能量转换装置,应用于国民经济的各个领域。电动机一般分为交流电机和直流电机。相比较交流电动机,直流电动机
9、具有良好的起动性能和宽广平滑的调速特性,因而被广泛应用于电力机车、无轨电车、轧钢机、机床和起动设备等需要经常起动并调速的场合。但直流电动机的换向是依靠换向器和电刷进行换流,在频繁的运转过程中,由于换向器和电刷的摩擦,一方面消耗电刷,使我们不得不定期检查和更换电刷,耗时耗力;另一方面又产生电火花、电磁干扰,影响附近的电气设备。针对这种情况,早在上个世纪30年代就有人开始研究无刷直流电动机。1955年,美国D.Hazrison等人首次成功的实现了用晶体管换向线路代替有刷直流电动机机械电刷,这标志着现代无刷直流电机的诞生。在进入20世纪60年代以后,电力电子技术和计算机技术的应用使电机的发展经历了持
10、久的革命性的变化。作为机电一体化的产品,无刷直流电动机也得以发展,并开始进入初步的应用阶段。无刷直流电动机既具有普通直流电动机调速性能好的特点,又具有交流电动机结构简单、便于维护的特点,因此得到了一定范围内的初步应用。自20世纪70年代开始,稀土永磁材料的发展,使无刷直流电动机有了进一步的发展,但由于永磁材料的价格昂贵,研究开发重点只能在航空、航天领域用的电动机和要求高性能而价格不是主要因素的高科技领域。在进入80年代后较低价格的钦铁硼永磁材料的出现,使无刷直流电机能够进入普通民用的市场提供了可能,几十瓦到几百瓦无刷直流电动机开始在医疗器械、仪器仪表、化工、纺织以及家用电器等民用领域初显身手。
11、在90年代后,随着电力半导体器件的飞速发展,如GTR, GTO, MOSFET, IGBT的相继出现,另外微处理器、集成电路技术的发展,逆变装置也发生了根本性的变化,这些开关器件在向高频化、智能化、大容量化的方向发展,使无刷直流电动机的很重要的一传统直流电机具有运行效率高和调速性能好等诸多优点,被广泛地应用于对起动和调速有较高要求的拖动系统中,如电力牵引、轧钢机、起重设备等。在使用中无刷直流电机相比有刷电机有许多的优点,比如:能获得更好的扭矩转速特;性高速动态响应;高效率;长寿命;低噪声;高转速。另外, BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。由于这些
12、特性,无刷直流电机被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。1.2无刷直流电机调速系统的研究现状和未来发展目前国内外无刷直流电机的一般控制技术应经比较成熟,但日本和美国具有较先进的无刷直流电机制造与控制技术。特别是日本在民用方面较为突出,而美国则在军工方面更加先进。当前的研究热点主要集中在以下三个方面:研究无位置传感器控制技术以提高系统可靠性,并进一步缩小电机尺寸与重量;从电机设计和控制方法等方面出发,研究无刷直流电机转矩波动抑制从而提高其伺服 ,扩大应用范围;设计可靠小巧,通用性强的集成化无刷直流电机控制器。无位置传感器控制技术:传统的无刷直流电机
13、通过位置传感器来直接检测电机转子的位置。无位置传感器控制技术主要通过电机内易获取的电压或电流信号,经过一定的算法处理,得到转子位置信号,也称为转子位置简介检测法。目前检测方法主要有:反电势法;电感法;磁链法;续流二极管法;观测器估计法;智能估计法等。其中反电势法原理简单应用较为广泛。采用无位置传感器控制的无刷直流电机一般较难直接起动,因此其起动问题一直是研究的热点和难点。利用反电势法检测转子位置的无刷直流电机三段式起动方法已经比较成熟,该方法从电机起动到稳定运行可分为三个阶段:定子定位、加速和切换。其他无位置传感器控制下的电机起动方法,如预定位起动、升频升压同步起动法和短时检测脉冲转子定位法等
14、也都有了一定的应用。无刷直流电机控制器:无刷电机控制器的发展同电器元件类似,经历了从分立元件控制方法到数字可编程集成电路控制方法的发展历程。一般来讲,采用分立元件设计的控制器结构复杂、体积庞大、可靠性通用性差,不利于批量生产。一次,当前无刷直流电机主要采用专用集成电路控制器、FPGA、单片机、DSP控制器的方法。目前电机控制集成专用电路较多,对于无刷直流电机来说有Motorola公司的MC33035无刷直流电机控制芯片、MicroLinear公司的ML4425/4428无位置传感器控制芯片等等。如果考虑到控制器今后软硬件设计等功能,可以使用FPGA、单片机、DSP等对控制器设计。FPGA可以用
15、VHDL、Verilog或C语言来编程,灵活性强,具有静态可重复编程和动态在线系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改,并能按照用户需求来定义接口功能。单片机和DSP具有丰富的外围接口,单片机一般用于简单的电机控制系统,而DSP由于具有强大的计算能力和数据处理能力,通常应用于电机的智能控制系统中。关于转矩波动抑制的问题比较复杂,不在本文讨论的范围内,所以不多加叙述。1.3 设计主要内容本文共分为四章,主要针对无刷直流电机的控制方法以及仿真进行研究。第一章主要概述了无刷直流电机调速系统的研究背景与发展现状;第二章介绍了无刷直流电机的原理,简要介绍了脉宽调制原理和无刷直流电机控制
16、芯片MC33035;第三章对基于PWM控制技术的无刷直流电机调速系统进行了基本的硬件设计;第四章运用MATLABSimulink仿真设计了一个转速单闭环无刷直流电机可逆脉宽调速系统,对其进行仿真,并根据仿真结果分析研究的无刷直流电机的特点。最后对全文进行了总结。第二章 无刷直流电动机原理2.1 无刷直流电动机的概述无刷直流电动机机属于同步电动机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以无刷直流电机并不会产生普通感应电机的频差现象。无刷直流电机中又有单相、两相和三相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为广泛的三相无刷直流电机。
17、直流无刷电机的主要由电动机本体、位置传感器(对于位置传感器检测方法)与电子开关线路三部分组成,如图2-1所示 图2-1 无刷直流电动机工作原理 从图2.1可见,直流无刷电动机组件主要由电动机本体位置传感器和电子开关线路三部分构成。其定子绕组一般制成多相,转子由永磁材料制成。电动机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其它起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2, 4,)组成。定子绕组分别与电子开关线路中相应的功率开关器件联接。位置传感器的跟踪转子与电动机转轴相联接。 当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁
18、场相互作用而产生转矩,驱动转子旋转。位置传感器则将转子磁钢位置信号变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。因此平常所说的直流无刷电动机,就其基本结构而言,可以认为是一台由电子开关线路、电动机本体及位置传感器三部分组成的电动机系统。直流无刷电动机的组成原理框图如图2.2图2-2直流无刷电动机转子的永久磁钢与永磁有刷电动机中所使用的永久磁钢的作用相似,均是在电动机的气隙中建立足够的磁场。不同之处在于直流无刷电动机中永久磁钢安装在转子上,而普通永磁直
19、流电动机是将磁钢安装在定子上。直流无刷电动机电子开关线路用来控制电动机定子上各相绕组通电的顺序和时间,主要由功率逻辑开关单元和位置传感器信号处理单元两部分组成。功率逻辑开关单元是控制电路的核心,它的功能是将电源的功率以一定逻辑关系分配给直流无刷电动机定子上各相绕组,以便使直流无刷电动机产生持续不断的转矩,而各相绕组导通顺序和时间主要取决于来自位置传感器的信号,但位置传感器产生的信号一般不能直接用来控制功率单元,常需要经过一定的逻辑处理后才能去控制功率单元。与有刷直流电动机区别的是:有刷直流电动机必须有一个滑动的接触机构-电刷和换向器,通过它们把电流反馈给旋转着的电枢。综上所述,构成直流无刷电动
20、机的主要部件框图如图2.3所示。图2-3下面做简要分述。2.2无刷直流电动机本体2.2.1 电动机定子无刷直流电机定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2-1b。从传统意义上讲,无刷直流电机的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的无刷直流电机定子有三个呈星行排列的绕组,每个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。跟传统有刷直流电机相比,无刷直流电机的绕组分布在定子侧,更有利于散热。电枢绕组可以Y接或接,如图2-4所示,但是考虑到系统的性能和成本较多应用Y接、三
21、相对称且无中性点引出的无刷直流电机。 图2-4 绕组形式无刷直流电机的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(EMF)不同,分别呈现梯形和正弦波形,故用此命名。梯形和正弦绕组产生的反电动势的波形图如图 2-5所示。本文中认为正弦绕组的无刷电机为永磁同步电机。 图2-5 a) 梯形绕组的反电势波形 图2-5 b)正弦绕组的反电势波形可想而知正弦绕组由于波形平滑所以运行起来相对梯形绕组来说就更平稳一些。但是,正弦型绕组由于有更多绕组使得其在铜线的使用上就相对梯形绕组要多,而且控制方法也比梯形波电动机大大复杂。所以在对电机运行精度要求不是非常
22、高的场合,梯形波电机也即无刷直流电机是非常合适的选择。2.2.2 电动机转子无刷直流电机的转子是由2至8对永磁体按照N极和S极交替排列在转子周围构成的(内转子型),如果是外转子型无刷直流电机那么永磁体就是贴在转子内壁上的。目前转子的永磁体多采用钕铁硼等高矫顽力、高剩磁感应密度的稀土永磁材料制作而成。无刷直流电机转子的永久磁钢跟有刷直流电机所用的磁钢相类似,均是在电机气隙中建立足够的磁场,只不过是采用了反装的形式。常见的转子结构有三种形式:(1)表面粘贴式磁极(又称瓦形磁极)。即在铁心外面粘贴径向充磁的瓦片形稀土永磁体。在电机设计过程中若采用瓦片形永磁体径向励磁并取其磁弧宽度大于120电角度,可
23、以产生方波形式的气隙磁通密度,减小转矩波动。无刷直流电机转子多采用这种结构。(2)嵌入式磁极(又称矩形磁极)。即在铁心内嵌入矩形永磁体,其优点是一个极距下的磁通由相邻的两个磁极并联提供,由于聚磁作用可以提供较大的磁通,但这种结构需要做隔磁处理采用不锈钢轴。(3)环形磁极。即在铁心外套上一个整体稀土永磁环,并且通过特殊方法将环形磁体径向充磁为多极。该种结构的转子制造工艺相对简单,适用于体积和功率较小的电机。2.2.3 有关电机本体设计的问题无刷直流电机的定子转子合称为电机本体。本体结构上与永磁同步电机相似,但没有笼形绕组和其他起动装置,其定子绕组一般制成多相,三相、四相、无相应用居多、无相以上的
24、电机比较少见;转子由永磁体以一定的极对数组成。电机本体的设计是一个很复杂的过程,其基本任务是根据给定的额定值和基本技术性能要求,选用合适的材料,确定电动机格部分的尺寸,并计算其性能,以满足节省材料、制造方便、性能良好的要求,获得较大的经济效益。本体要设计的内容很多,其中包括电磁设计、结构设计、施工设计以及工艺设计等。本文仅对极对数的选择进行简要的讨论,这对后面的仿真有较大影响。选择极对数应综合考虑运行性能和经济指标。下图为两极、四极和八极(p=1,2,4)内转子型无刷直流电机本体结构示意图。 图2-6 本体机构示意一般来说增加极对数p,可以减少每极磁通,定子轭及机座截面积可相应减小,从而减少电
25、动机的用铁量;定子绕组的端接部分将随极数的增加而缩短,所以在同样的电流密度下,绕组的用铜量也减少了;极数增加后定子绕组电感相应减少,这有利于电子器件换相。同时,当极数增加后,制造工艺也变复杂;极对数增加,考虑到极漏磁不能太大,极弧系数要减小,从而使电动机原材料利用率变差;增加极数,在同样的转速下,电子器件的换相次数增多,从而增加了换相损耗。当电流密度不变时,定子绕组中的铜耗岁极数的增加而降低。一般来说电动机效率随极数的增加而有所下降。所以要根据需要合理的选择电动机的极对数。2.3 转子位置检测由于无刷直流电机利用永磁同步电机的结构代替了传统直流电机的结构,所以需要逆变装置和转子位置检测结构来实
26、现“换相”过程。转子位置检测的方法主要分为以下两大类2.3.1 位置传感器检测法位置传感器在无刷直流电机中起着检测转子磁极位置、为逻辑开关电路提供正确的换相信息的作用,即将转子磁极的位置信号转换成电信号,然后去控制定子绕组换相。绕组换相。位置传感器种类很多,目前在无刷直流电动机常用的有电磁式位置传感器、光电式传感器、磁敏式位置传感器和旋转变压器等。电磁式位置传感器是利用电磁效应来测量转子位置,有开口变压器、铁磁谐振电路、接近开关电路等多种类型。它具有输出信号大、工作可靠、寿命长、对环境要求小等优点,但这种传感器体积较大,信噪比较低,同时其输出波形为交流,一般需要经整流、滤波方可使用。光电式位置
27、传感器是利用光电效应,由跟随电机转子一起旋转的遮光部分和固定不动的光源等部件组成,有绝对式编码器和增量式编码器之分。它具有定位精度高、价格便宜、易加工等特点,但对恶劣环境的适应能力较差,输出信号需加整形电路处理。磁敏式位置传感器是利用某些半导体敏感元件的电参数按一定规律随周围磁场变化而变化的原理制成。常见的类型有霍尔元件、磁敏电阻和磁敏二极管等。一般说来,它对环境适应能力较强,输出信号好,成本低廉,但精度不高。霍尔传感器的应用比较广泛旋转变压器一般用在多相电机的控制中,它可以输出多路位置信号,满足多相电机控制的要求,但安装不易,价格较昂贵,普通的三相无刷直流电动机很少用旋转变压器。霍尔传感器是
28、依据霍尔效应原理制成。霍尔效应是指当通电导体处于磁场中,由于磁场的作用力使得导体内的电荷会向导体的一侧聚集,当薄平板通电导体处于磁场中时这种效应更为明显,这样一侧聚集了电荷的导体会抵消磁场的这种影响,由于电荷在导体一侧的聚集,从而使得导体两侧产生电压,这种现象就称为霍尔效应,E.H霍尔在 1879 年发现了这一现象,故以此命名。根据霍尔效应原理可以制成四端半导体的元件。;两个输出端输出霍尔电压,两个控制端输入控制电流。实用的霍尔片厚度很薄,均在几微米一下。从霍尔片的结构来看,它的制作和半导体元件将近。目前,由硅材料制作的霍尔元件制造技术成熟,适于大批量 ,价格低,性能随稍差但应用非常广泛。由砷
29、化镓制成的霍尔元件性能最好但是价格高限制了应用。当霍尔元件在磁场中位置变化时,霍尔电动势的大小和方向也相应变化,这样就起到了反应传感器位置的作用。上述霍尔元件所产生的电动势不够大,在应用时往往要外接放大器,很不方便。随着半导体集成技术的发展,霍尔元件和放大电路往往集成在一个芯片中,构成了霍尔集成电路。其结构如下图所示图2-7 霍尔集成电路它通过简单的开环放大器来驱动输出级。霍尔集成电路按功能分有线性型和开关型两种。一般无刷直流电机的位置传感器宜选用开关型。霍尔元件安放在电机的固定位置,将霍尔元件安放到电机的定子是比较复杂的,因为如果安放时位置没有和转子的磁场相切那么就可能导致霍尔元件的测量值不
30、能准确的反应转子当前的位置,鉴于以上原因,为了简化霍尔元件的安装,通常在电机的转子上安装一颗冗余的磁体,这个磁体专门用来感应霍尔元件,这样就能起到和转子磁体感应的相同效果,霍尔元件一般按照圆周安放在印刷电路板上并配备了调节盖,这样用户就可以根据磁场的方向非常方便的调节霍尔元件的位置以便使它工作在最佳状态。 霍尔元件位置的安排上,有 60、120、240等多种形式。2.3.2 无位置传感器检测法无位置传感器控制技术是无刷直流电机研究的热点之一,国内外众多学者已经对此展开了相关研究,并取得了阶段性成果。无位置传感器控制方式下的无刷直流电机具有可靠性高、抗干扰能力强等优点,同时在一定程度上克服了位置
31、传感器安装不准确引起的换相转矩波动。发展无位置传感器控制技术是因为位置传感器的存在限制了无刷直流电机在某些特定场合下的应用,这主要体现在:置传感器可能使电机尺寸增大;位置传感器使电机与控制系统之间导线增多,使系统容易受外界干扰影响;位置传感器在高温、高压和湿度较大等恶劣工况下运行时灵敏度变差,系统运行可靠性降低;位置传感器对安装精度要求高,机械安装偏差引起的换相不准确直接影响电机的运行性能。因此无位置传感器控制技术越来越受到重视,同时,随着检测手段、控制技术的发展以及微控制器性能的提高,无位置传感器控制技术得到了迅速发展,部分技术已经实用化。依据检测原理的不同,无刷直流电机无位置传感器控制方法
32、主要包括反电势法、磁链法、电感法以及人工智能发等。在各种无位置传感器控制方法中,反电势法是目前技术最成熟、应用最广泛的一种位置检测方法。该方法将检测获得的反电势过零点信号延迟30电角度,得到六个离散的转子位置信号,为逻辑开关电路提供正确的换相信息,进而实现无刷直流电机的无位置传感器控制。无刷直流电机反电势过零点与换相时刻的对应关系如图所示。图2-8中,eA、eB、eC为相位互差120电角度的三相梯形波反电势,Q1Q6为一个周期中的六个换相点,分别滞后相应反电势过零点30电角度。图2-8反电动势控制原理还有一方面需要考虑:当电机转速比较低的时候,反电动势会比较小,以致过零检测电路无法正常检测,因
33、而难以实现电机自启动。而转子初始位置的确定是无刷直流电机控制系统稳定启动的基础,直接影响系统最大启动转矩和最小启动时间。目前,在无位置传感器控制算法中,转子初始位置的估值主要是电感法。电感法通过給定子绕组注入特殊的短时脉冲电压,然后根据在一定时间间隔内电流响应的大小判断各个绕组电感差异,由电感差异来确定电机初始位置。由于永磁体的磁阻大,绕组电感小,电感法判断转子初始位置计算量大且需要精确测量电流。另外一种为转子定位法,该方法通过给某特定项绕组通电,是电机转子固定到预定位置,从而将电机转子位置有未知转换为已知。转子定位法使用简单,但对整个启动过程而言,启动前转子初始位置未知,电机可能会出现反转且
34、定位期间电流较大。对于反电势控制方法,启动方法目前主要有:三段式启动法、预定位启动法,升频升压同步启动法、电压插值启动法。无位置传感器控制方法可以简化制造节约成本。另外,除去了霍尔元件的电机可以安装在诸如粉尘和油污比较大的工况条件较为恶劣的地方而无须为保证霍尔的正常工作而定时进行清理,与此同时,这种免维护电机还可以安装在人很难触及的地方。2.4 PWM调制技术前面已经讲过,无刷直流电机是由电动机本体、转子位置检测系统和电子开关线路三部分组成。在定子开关线路这一部分,又可以分为电子逻辑信号处理部分和功率逆变部分,即主电路部分。主电路是由电力电子器件组成的,担负着电能的变换和调控任务。在直流无刷电
35、动机的主电路中,电力电子器件以开关方式工作,是损耗减少,从而提高电能的变换效率。电力电子器件以开关方式工作,通过控制电压脉冲宽度和脉冲序列的周期以达到变压变频,从而把直流电压变成交流电压驱动无刷直流电机运行,即实现所谓的PWM控制。由这样一组开关器件组成的开关功率放大器(逆变器)与工作在线性状态的放大器不同,它具有时滞、谐波与死区、饱和等非线性特性,使功率电路产生谐波,以及使放大器系统的模型复杂化。随着电力电子技术的发展,出现了可控关断的即自关断电力电子器件,即全控式器件。如大功率晶体管(GTR)、电力场效应晶体管(power MOSFET),可关断晶闸管(GTO) , MOS控制晶闸管(MC
36、T)、绝缘栅门极控制晶体管(IGBT)等自关断器件,采用全控型开关器件很容易实现脉冲宽度调制,与半控型开关器件晶闸管变流器相比,体积可缩小百分之三十以上,装置效率高,功率因数高。同时由于开关频率的提高,直流脉冲宽度调制(PWM-M)调速控制系统与V-M调速控制系统相比,电流容易连续,谐波少,电机损耗和发热都较小,低速性能好,稳精度高,系统通频带宽,快速响应性能好,动态抗扰能力强。直流无刷电动机是以电子换向线路和转子位置检测器代替传统直流电动机的机械换向装置而组成的新型电机。下面简要介绍一下PWM控制技术的原理。脉冲宽度调制(Pulse Width Modulation)简称PWM,它是通过功率
37、管开关作用将恒定直流电压转换成频率一定,宽度可调的方波脉冲电压,通过调节脉冲电压的宽度,改变输出电压的平均值的一种功率变换技术。PWM极数可以激起有效的进行谐波抑制,在频率、效率方面有着明显的优点,使逆变电路的性能与可靠性得到了明显的提高。采用PWM方式构成的逆变器,器输入法是为固定不变的直流电压,可以通过PWM极数在同一逆变器中既实现调压又实现调频。由于这种逆变器,只有一个可控的功率级,简化了主电路和控制回路的结构,因而体积小、重量轻、可靠性高。又因为集调压、调频于一身,所以调节速度快、系统的动态相应好。此外,PWM技术还提高了逆变器对交流电网的功率因数。采样控制理论中的一个重要结论:冲量相
38、等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,如下图所示。这是所有PWM技术的最根本的理论基础。图2-9 冲量等效原理把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为t1,每两个脉冲间的间隔宽度为t2,则脉冲的占空比为 (2-1)图2-10 PWM调制原理此时,电压的平均值和占空比成正比,所以在调节频率是,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频变压的效果,所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节。下面介绍两种最常用的PWM控制技术等脉宽PWM法 VVVF(Variable Voltage Vari
39、able Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压.等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。SPWM(Sinusoidal PWM)法是一种比较成熟的,是目
40、前使用较广泛的PWM法。如果将一个正弦波半个周期划分N等份,每一份的正弦波形下的面积可用一个与该面积近似相等的矩形来代替,于是正弦波所包围的面积可以用着N个等幅不等宽的矩形脉冲面积之和来等效。在工程应用中感兴趣的是基波分量,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m与脉宽i有线性关系,如下式(2-2)上式说明,逆变器输出基波电压幅值随调制脉冲的宽度而变化,只要采取措施,利用控制信号去调节脉宽,即可调节基波幅值。半周期内的脉冲数N越多,谐波抑制效果越明显。在进行脉宽调制时,使脉冲系列的占空比按正弦波规律来安排。当正弦值为最大值时,脉冲的宽度也最大,
41、而脉冲间的间隔较小。反之,当正弦波值较小时,脉冲的宽度也最小而脉冲间的间隔则较大。这就是SPWM控制法。2.5无刷直流电机电子换相器在一般的直流电动机中,电枢绕组元件有某一支路进入另一支路式,元件中的电流和电动势都要改变方向。绕组元件中电动势方向的改变,是由绕组元件的元件边在电枢旋转过程中,轮流切割定子的N极和S极磁通直接产生,而绕组而绕组元件中电流方向的改变,是由换向器和电刷所组成的机械整流器(装置)来完成。为消除一般直流电动机所存在的一些弊病,人们研发出的以电子换相代替机械换向的直流无刷电动机,实质上是一个由电动机本体、功率开关主电路及转子磁极位置传感器等三部分组成的闭环系统。这里且称为无
42、刷直流电机的基本系统。把基本系统中的功率开关电路、转子磁极位置传感器及相关的电子电路合并在一起称为电机换向器。其主要功能是确保直流无刷电动机在运行过程中,定子、转子两磁场始终基本上保持正交,以提高运行效能。由于位置传感器、功率开关在前面一节已经讲述,故这里只涉及到无刷直流电机定子绕组通定子换相器之间的各种连接方法和特点,由于大多数无刷直流电机的定子绕组为三相绕组,故以三相绕组作为重点讲述。2.5.1三相半控电路常见的三相半桥式驱动电路如图2-11所示。图中,LA、LB、LC分别是电机定子A、B、C三相绕组,T1、T2、T3为功率器件,分别于电机三相绕组相连。来自转子位置传感器的信号Ha、Hb、
43、Hc经放大后启动功率器件进而控制电机换相。在换相过程中,定子各相绕组在气隙中所形成的旋转磁场是跳跃的,在一个周期内每相通电120电角度。由此可见,采用三相半桥式驱动方式的无刷直流电机控制系统驱动元件少、成本较低、控制简单,但是其转矩波动较大、电机绕组利用率低,每个绕组只通电1/3周期时间,在运行过程中其转矩的波动较大,Tm/2到Tm而且直流无刷电动机的电源线需要引出中性线,而且反转控制相对困难。因此这种驱动在实际应用中较少采用。图2-112.5.2三相全控电路图2-12图2-12给出了一种全控桥电路,电动机绕组为Y联接。功率器件为6只MOSFET管,起绕组开关之用。他们的导通方式又可分为两两导
44、通和三三导通两种方式。(1)两两通电方式是指每一瞬间又两只功率器件导通,每隔1/6周期换相一次,每次换相一个功率管,每次有一个功率器件换相,每个功率管导通120电角度。功率管T1和T2导通时,电流从T1管流入A相绕组,再从C相绕组流出经T2回到电源。如设流入绕组的电流所产生的转矩为正,则从绕组流出的电流所产生的转矩为负,它们的合成转矩,其大小为Ta。当电动机转过60电角度后,由T1-T2通电换成T2-T3通电,这时电流从T3流入B相绕组再从C相绕组流出,经T2回到电源,此时合成的转矩,其大小同样为Ta,但合成转矩Tbc的方向转过了60电角度。而后每次换相一个功率管,合成转矩矢量方向就随着转过6
45、0电角度,但大小始终保持Ta不变。 所以,同样一台直流无刷电动机,每相绕组通过与三相半控电路同样的电流时,采用三相Y连接全控电路,在两两换向的情况下,其合成转矩增加了Ta倍。每隔60电角度换向一次,每个功率管通电120,每个绕组通电240,其中正相通电和反向通电各120。采用三相全控电路时的转矩波动比用三相半控时小得多,仅从0. 87Tm到Tm。(2)三三通电是指每一瞬间均有三只功率管同时导通,每隔60换向一次,每个功率管通电180。它们的导通次序是T1T2T3, T2T3T4, T3T4T5, T4T5T6, T6T1T2, TIT2T3。当T6T1T2导通时,电流从T1管流入A相绕组,经B相和C相绕组(这时B和C两相绕组为并联)分别从T6和T2流出。这时流过B相和C相绕组的电流分别为流过A相绕组的一半,其合成转矩大小为1.5。经过60电角度后,换向到T1T2T3通电,即先关断T6而后导通T3(注意,一定要先关T6而后通T3,否则就会出现T6和T3同时通电,则电源被T3和T6短路,这是绝对不允许的