1、河南理工大学采矿工程专业2011届毕业设计摘要:常村煤矿位于三门峡市内,井田地质条件中等,开采的2-3煤层赋存稳定,倾斜角度为9-13,井田划分为四个盘区,矿井的生产能力为1.20Mt/a,服务年限为59.6 a。本矿井设计采用立井单水平上下山的开拓方式,井底车场为立井梭式车场,由于本矿井型为大型矿井,对连续运输要求较高,主要采用胶带输送机运输,矿井工作制度为“四六制”,采用走向长壁采煤,综合机械化放顶煤开采工艺。关键词: 采矿专项初步设计;立井;单水平开拓;盘区式准备;走向长壁;综合机械化;放顶煤DThe 1.20Mt special preliminary Coal Mine design
2、 for changcunAbstract: The meaning of changcun Mine is located in the Sanmenxia city. The Mine simple geological conditions ,and mining of coal deposit stability 2-3,9-13 tilt angle, The Mine divided into four panel. Mine production capacity of 1.20Mt/a, length of service is 59.6 years. This mine sh
3、aft designed using single level up and down way, Bottom for spindle type circular wheel-dreven wheel-dreven, since the mine type for large mines, higher requirements of continuous transportation, mainly uses the belt conveyor, mine work system for the four Six system , adopt to longwall mining, Comp
4、rehensive mechanized top coal caving mining technology. Key words: Mining the special preliminary design; shaft; single level of development; panel type preparation; towardlong wall; comprehensive mechanization; Top coal caving 目录1 矿区概况及井田地质特征 11.1 矿区概况11.1.1 交通位置11.1.2 井田地形11.1.3 河流及水体21.1.4气候21.2
5、井田地质特征21.2.1 井田地质构造21.2.2水文地质61.3 煤层特征91.3.1煤层的可采性评价91.3.2煤层岩特征91.3.3地质勘探程度102 井田境界和储量 112.1 井田境界112.2 井田储量112.2.1矿井工业储量112.2.2矿井设计储量122.2.3矿井设计可采储量133 矿井工作制度、设计生产能力及服务年限163.1矿井工作制度163.1.1矿井工作制度163.2矿井设计生产能力及服务年限163.2.1矿井设计生产能力及服务年限164 井田开拓174.1 概述174.2 井田开拓174.2.1对井田开拓中若干问题分析174.2.2井筒位置的确定184.2.3工业
6、广场的位置194.2.4 方案比较194.3 井筒特征244.3.1 主井244.3.2 副井254.3.3 风井274.3.4井筒深度284 .4 井底车场及主要巷道284.4.1线路总平面布置设计及平面294.4.2副井马头门线路314.4.3井底车场通过能力计算334.4.4 确定井底车场主要巷道断面及硐室位置334.4.5井底车场硐室334.4.6主要巷道354.5 开采顺序及采区、采煤工作面的配置374.5.1开采顺序374.5.2保证年产量的同采盘区和工作面数384.5.3盘区工作面配置394.5.4矿井产量的验算394.6 井巷工程量和建井工期404.6.1 概述404.6.2井
7、巷工程量和建井周期的计算图表405 准备方式盘区巷道布置435.1 概述435.1.1 盘区位置435.1.2 盘区煤层特征435.1.3 水位地质构造435.1.4 地表情况435.2 盘区巷道布置及生产系统435.2.1 盘区巷道布置435.2.2盘区生产系统446 采煤方法466.1 采煤工艺方式466.1.1确定采煤工艺方式466.1.2 采煤工作面设备476.2 回采巷道的布置486.2.1 回采巷道布置方式486.2.2 盘区车场形式选择486.2.3盘区硐室516.2.4 盘区千吨掘进率、盘区掘进出煤率、及盘区采出率516.2.5确定盘区巷道掘进方法、设备数量及掘进工作面数目52
8、7 井下运输 547.1概述547.1.1 煤层特征547.1.2矿井运输系统547.2 盘区运输设备选择557.2.1 矿井设备选型原则557.2.2 盘区设备选型及能力验算557.3 大巷运输设备选择567.3.1皮带运输大巷设备选择567.3.2 辅助运输大巷设备选择577.3.3 运输设备能力验算578 矿井通风及安全技术588.1 矿井通风系统的选择588.1.1矿井通风系统的基本要求588.1.2 矿井通风方式的选择598.2 盘区及全矿所需风量608.2.1 风量计算608.2.2 风速验算628.3 矿井通风阻力计算628.3.1 计算原则628.3.2 矿井通风阻力计算638
9、.3.3 计算矿井总风阻及总等积孔668.4 扇风机选型668.4.1选择主扇668.4.2 电动机选型688.5 矿井安全技术措施698.5.1预防瓦斯的措施698.5.2 预防井下火灾的措施708.5.3为防止井下水灾的措施708.5.4 粉尘的综合防治71致 谢74参 考 文 献751 矿区概况及井田地质特征1.1 矿区概况1.1.1 交通位置常村井田位于河南省义马市东南部,西边离渑池县有10km,东边离洛阳有80km,井田北部有陇海铁路、连霍高速公路和310国道,本矿有专用铁路和公路与之衔接,交通便利(如下图l-l)。图1-l 常村矿交通位置示意图1.1.2 井田地形井田内以中上侏罗系
10、砾岩为构架,地表多为第四系黄土所覆盖。地面高程405580m,地形切割较强烈,属豫西低山丘陵区。地形走向呈东西,分水岭处于中南部,分水岭以南,地形呈较缓的波状起伏,最低标高405m,相对高差2050m,发育有马沟、马连洼沟、坡头南沟、任家沟、宋沟等冲沟,由西北向东南汇入洛河,这些沟谷纵坡长,沟身长。1.1.3 河流及水体本区主要河流为南涧河,义马以上流域面积约576km2,源于陕县观音堂、英豪山东麓,自西而东流经井田西北边缘中侏罗系露头区,向东则渐离井田浅部边界,据以往观测,旱季流量仅2.26m3S,1958年洪峰暴发流量可达1446.5m3S,最高洪水位标高(常村桥处)为+411.68m,系
11、一典型的山区河流。1.1.4气候 本区为大陆性气候,据渑池县气象站观测资料:年平均气温12.3,月均气温25.3(7月)-2.2(l月),极端气温最高为41.6(1966年6月20日),最低-18.7(1969年1月31日)。年均降雨量为612.3mm,最大为1070.8mm(2004年),最小为304.5mm(1997年),月最大为290.5mm(1957年7月);日最大为131.8mm(1982年7月30日)。降雨量多集中于第三季度,可占全年的55%。年均蒸发量为1886.5mm,最大为2368.7mm(1966年),最小为1583.3mm(1985年)。年均绝对湿度为11.0毫巴,相对湿
12、度为64。59月以东东南风为主,10月至翌年4月则多西西北风,年均风速3.3ms,最大21ms(1994年)。冻结期分布于11月至次年3月,冻结天数31天(1958年)93天(1960年),最大冻结深度34cm。据洛阳地区地震办公室提供,义马矿区属5级地震区,震中烈度67度。据记载:1847年渑池地震,5级,震中烈度6度;1920年9月、1930年两次地震,中国科学院鉴定为6级;1964年9月、11月地震强度与前两次大致相同。因此矿井有关建筑设施均应考虑抗震性能。1.2 井田地质特征1.2.1 井田地质构造井田内中新生代地层广泛分布,下部为含煤岩系,上部为巨厚的粗碎屑岩系,各系、统间多以假整合
13、或角度不整合接触,代表了中生代以来发生的各次地壳运动,其中以燕山运动最为强烈,它控制了沉积建造(特别是上部为巨厚的粗碎屑岩系)的形成和变形。煤系地层大多为第四系黄土覆盖,但也有零星出露。根据地表和钻孔揭露,地层由老到新的岩性特征分述如下:三叠系上统延长群:延长群是分布在华北西部广大地区的晚三叠世含煤岩系。本区延长群的厚度达1700m以上,可划分为油房庄、椿树腰、谭庄等三个组。其中谭庄组含多层薄煤和煤线,但不具工业价值。下面仅就谭庄组描述如下。谭庄组(T3yt)据岩性可分为上下两段:下段:以灰黄、浅灰色细砂岩,粉砂岩和泥岩为主,夹粉红色厚一巨厚层状长石石英砂岩,下部夹煤线。局部夹中基性沉凝灰岩。
14、本段厚290m左右。上段:以浅灰色中一细粒(局部粗粒)长石石英砂岩和粉细砂岩互层为主,夹灰绿和深灰色泥岩、粉砂岩。粗砂岩中具大型板状和锲形交错层理,粉、细砂岩中多具波状层理,发育变形构造和生物通道。含薄层状和透镜状菱铁矿结核。夹l20余层薄煤或煤线,一般小于050m,仅个别见煤点(501、805号孔)可达1m左右。厚274-300m。微角度不整合侏罗系(J):中统义马组(J21ym):为煤系地层。平行不整合。 中统马凹组(J22):下部:在16线以东为巨厚层砾岩夹灰绿、棕红色砂岩、砂质泥岩。以西则为砂岩,砂质泥岩夹砾岩。上部:为棕红、砖红、灰绿或杂色砂岩,砂质泥岩和砾岩互层,井田西部砾岩多为夹
15、层。砾岩之砾石成分以石英砂岩、石英岩为主,次为火成岩,偶见石灰岩;次棱角状或次圆状;砾径2500mm;砂泥质填隙,基底式和孔隙式胶结;块状构造。砂泥质沉积中局部可见缓波状或平行层理。本组一般厚185m,在井田内有自西北向东南渐薄之趋势。平行不整合 上统(J3)。杂色巨厚层砾岩偶夹砂、泥岩透镜体;砾石以石英砂岩、石英岩为主,含火成岩和石灰岩;次棱角状和次圆状,砾径2900mm不等;砂质充填,孔隙式泥质、钙质胶结。厚363m。 不整合下第三系(E):上部为浅土红色细砂岩、砂质泥岩互层,夹薄层砾岩。中部为砂砾岩夹砂质泥岩。下部为肉红色砾岩。砾岩之砾石成分以石英砂岩、石英岩为主,次为火成岩和石灰岩等;
16、砾径一般10200mm;砂泥质充填、孔隙式钙质胶结厚度小于813.95m。仅分布于井田之东南侧。不整合 上第三系(N):上部为灰白、肉红色泥灰岩、隐品质结构,常含次棱角状石英岩砾石,局部见同生角砾。具水平纹层,发育蜂窝状溶洞,部分为红土充填。下部为浅棕红色砾岩、砾石成分以石英岩和石英砂岩为主,次为少量的基性火成岩、石灰岩;次圆状、砾径2-200mm不等;孔隙式泥钙质胶结。厚0-50.80m,局部零星发育。不整合第四系(Q)土黄色、棕红色粘土、砂质粘土、多含砂姜,底部通常为粘土质砂姜和砾石。冲沟和河床中为砂砾。厚0-52.00m。图l-2 地质综合柱状图表1-1 主要地质构造特征表 序号名称断层
17、性质断层面走向断层面倾向倾角( )落差(m)水平断距(m)位置及范围1F8逆断层北东15 西偏北80 0-45m300 m为常村与跃进两井田之边界断层,在井田内延展长度1500m左右。2F3逆断层东西南北80 0150 m901000 m斜切于井田中西部,井田内长度大于4000m1.2.2水文地质本区位于洛河流域的东北部,为一广被第四系亚粘土覆盖的山前丘陵区。西、北为中低山构成的二级分水岭所环绕,东、南地势开阔。分水岭标高7481463m;丘陵标高400600m。南涧河自西向东蜿蜒于丘陵间,河谷标高为+360m(城村东),坡降3.14。在南涧河两岸发育着一、二级阶地,阶地高出河床分别为23m和
18、1520m。南涧河南又有一近东西向高地构成了三级分水岭,标高为520670m。其南部水泄入洛河;北部水泄入南涧河。区内冲沟十分发育,构成了排泄地表径流的有利地形。南涧河发源于英豪以西中、低山区,向东流至洛阳汇入洛河,流域面积约1430km2,为一典型的季节性河流。1958年洪峰流量达1446.5m3s,一般流量为0.31470.10m3/s,是排泄地表及地下径流的主要渠道。区内主要含水层有:第四系底部卵石砂姜层孔隙型潜水一微承压水;第三系泥灰岩裂隙一岩溶型潜水一承压水;上、中侏罗统巨厚层砾岩孔隙一裂隙型潜水一承压水;石炭系薄层灰岩层间岩溶一裂隙型承压水;奥陶、寒武系巨厚层灰岩岩溶一裂隙型潜水一
19、承压水。这些含水层在区内均有出露,直接承受大气降水的补给,基岩含水层之间均有厚的隔水岩系相隔。中、低山区,丘陵地带为地下水的补给区,系贫水区;而寒武、奥陶系厚层灰岩分布区的断层带,又是地下水的富集带。南涧河河谷为地下水的泄水区,河谷及其两岸系富水区。由于基岩含水层充水空间不发育,并随深度延深而减弱,基岩含水层暴露面积小,地形条件不利补给,降水集中,补给期短等因素,决定了基岩静、动水量小,区域水文地质条件属简单一中等类型。井田位于丘陵区的三级分水岭部位,属贫水区,水文地质条件简单。含水层:(1)第四系砂砾石孔隙潜水含水层:砂砾、卵砾为主,根据其成因不同可分成两类:一类是以冲积为主的河床、河漫滩相
20、沉积,一般厚度3.1215.52m,沿南涧河两岸呈带状分布。它直接暴露于南涧河河床及河漫滩中,与河水相勾通,底部直接不整合于侏罗系中统砾岩之上。据2306号孔抽水试验资料:q=0.7291.420 Lsm,k=43.17969.277md,静水位标高+406.80m,水质为HCO3Ca型。另一类则以基岩风化残积、坡积为主的沉积,分布于分水岭两侧的丘陵地带,底部不整合于侏罗系砾岩及第三系泥灰岩之上,和基岩风化带构成了统一的含水体,据井田内民井观测,水位年变幅为1.654.35m,水质为HCO3SO4一CaNaMg型。(2)第三系泥灰岩、砾岩岩溶一裂隙潜水一承压含水层:厚050.80m,上部岩性为
21、泥灰岩,质较纯,蜂窝状溶洞发育。下部多为钙质胶结的砾岩,该层主要分布于井田的东部(13线以东)。厚度呈由北向南逐渐增厚的趋势。据千秋配风井抽水试验资料:q=0.4509 Lsrn,K=1.516md。另据钻孔近似稳定水位观测,水位标高+457.33+527.82m,富水性中等,水质HCO3CaMg型。(3)侏罗系上统砾岩孔隙一裂隙潜水一承压含水层:厚0414.80m,井田内广布,西厚东薄,岩性以砂泥质胶结的粗砾岩,下部夹有05层的砖红色粉砂岩、细砂岩薄层。据井田邻区抽水试验资料:q=0.06260.178Lsrn,K=0.201.470md,水位标高+472.34+498.65m,水质为HCO
22、3SO4CaMg型,水温15.5,富水性较弱。(4)侏罗系中统砾岩孔隙一裂隙承压含水层:一般厚185m左右,以次圆状圆状石英岩,石英砂砾岩为主,砾径大小不一,砂泥质胶结,井田内稳定分布,据邻区抽水试验资料;q=0.000070.0055 Lsrn,K=0.0004050.0312md,水位标高+416.50+526.96m,水温12,富水性弱,该层是矿井充水的主要含水层。(5)2-3煤(分叉区)顶板砂岩裂隙承压含水层:厚031.85m,岩性为中粗粒砂岩,钙泥质胶结,分布于17线以西,F3断层以北的矿井西翼,厚度变化呈由北向南增厚的趋势。据北露天井田2102号孔抽水试验资料:q=0.000352
23、Lsrn,K=0.000613md,静水位高程+410.73m,富水性弱,对矿井充水无影响。(6)侏罗系中统义马组底砾岩孔隙裂隙承压含水层:厚057.94m,东厚西薄,砾石成分以次圆状,浅灰色、灰白色石英岩和石英砂砾岩为主,砾径大小不一,多以泥质胶结,在井田南部逐渐相变为含砾泥岩,13线以东为2-3煤直接底板。(图5-1)。据北露天井田2405号孔抽水试验资料:q=0.0068lLsrn,K=0.0382md,静水位标高+424.96m,水质为HCO3Ca型,井下在开拓过程中,揭露本层时,基本无水。井田内地质构造复杂程度属中等。矿井主要的充水含水层为侏罗系中统砾岩层,它直接承受大气降水的补给;
24、第四系砾石层,第三系泥灰岩、砾岩及侏罗系上统砾岩通过不整合面或通过断层越流补给侏罗系中统砾岩层。但由于侏罗系中统砾岩充水空间不发育,补给范围狭小,补给条件不良等因素所致,其富水性较弱,单位涌水量q0.1 Lsm,水文地质条件属中等。据矿井历年涌水量观测成果,1990年以来,全矿井正常涌水量为140m3h,最大涌水量364m3h。涧河是本矿主要的水害,井下采掘工程受到一定的影响,因此,矿井采取以地面截堵和井下防排相结合的防治措施,方法正确。1.3 煤层特征1.3.1煤层的可采性评价义马组共含煤二组三层,其中普遍可采者一层(2-3煤),不可采的两层(1-2、1-1煤),煤层平均总厚度7.38m。现
25、将可采煤层的一些主要特征评述如下。煤质情况,如下表:表1-2 煤的工业分析表煤层名称煤牌号水分(%)M灰分(%) A挥发份(%) V含硫量(%) S含磷量(%) P胶质厚度Y(m)发热量(MJ/kg)Q备注2-3长焰煤1.8015258.001.320.0522现将可采煤层的一些主要特征评述如下:表1-3 设计主要可采煤层特征表煤层名称煤层厚度(m)倾角( )围岩性质煤牌号硬度容重(t/m3)煤层结构及稳定性最小最大平均可采厚度顶板底板平均2-3035.6623.497.38m9-13粉砂岩泥岩粉砂岩长焰煤脆度较小1.43内生裂隙不发育,多具立方节理。较稳定1.3.2煤层岩特征2-3煤层煤岩组
26、分在水平方向上分布是由东向西,垂直分布是由上而下、丝炭和暗煤渐增。因此,西部煤层底部普遍有厚薄不等的丝炭和暗煤组成的暗淡型煤分层。2-3煤层有机质含量为89.1,以凝胶化物质为主,且多为凝胶化基质,偶见极少量木质镜煤;其次为丝炭化物质,多为丝炭碎片,极少数腔孔结构保存完好,丝炭多分布在凝胶化基质中;稳定物质主要是小孢子,含量较少。2-3煤层显微煤岩组分中无机质占10.9,以粘土类为主,其次为碳酸盐类和硫化物类。粘土物质呈条带状、团块状、球粒状、不规则状分布于有机质中,或充填于丝炭孔腔及裂隙中。碳酸盐类(主要有方解石、白云石、菱铁矿等)与硫化物多呈粒状或星散状分布于凝胶化基质中,或充填在裂隙里。
27、对主要煤层显微煤岩组分的定量鉴定表示,其煤层的显微煤岩组分中镜质组占主要部分,壳质组组分相对较少。同时,表研究表明2-3煤层的显微煤岩组分有明显差异。根据显微煤岩组分定量分析结果,按地科院(1964)腐植煤显微煤岩类型分类方案, 2-3煤层属亮暗煤型。常村矿2-3煤的煤质指标,为长焰煤类,属中灰、中硫及特低硫煤。其挥发份高、发热量中等、灰熔融性低,结渣性强、煤对CO2反应性较好,热稳定性差,易风化破碎、腐植酸含量及苯抽出物低。常村矿原煤未作加工,直接出售,主要用于火力发电、工业锅炉等用煤,亦作民用燃料。针对常村矿块煤产率高,化学反应性好,易转化等优点,应进一步研究开发作为气化原料用煤及其综合利
28、用途径,以扩大煤的工业用途,创造最佳经济效益。1.3.3地质勘探程度本井田精查地质勘探报告综合了历次勘探结果对本井田主要褶曲,断层等基本探明,控制了地层变化规律可采煤层的赋存特征,水文地质条件及煤质牌号,煤层分析资料基本可靠,勘探程度能满足设计生产之要求782 井田境界和储量2.1 井田境界井田境界应根据地质构造、储量、水文、煤层赋存情况、开采技术条件、开拓方式及地貌、地物等因素,进行技术分析后确定。一般井田境界划分的原则有如下几条: 1、以大断层、褶曲和煤层露头、老窑采空区为界;2、以山谷、河流、铁路、较大的城镇或建筑物的保护煤柱为界;3、以相邻矿井井田境界煤柱为界;4、人为划分井田时:煤层
29、倾角较小,特别是近水平煤层时,用一垂直面来划分井田境界;在倾斜或急倾斜煤层中,沿煤层倾斜方向,以主采煤层底板等高线为准的水平面划分井田。本设计井田范围北以常村村为界,南以人为划分为界,东以F16断层为界,西以跃进矿划分为界,东西长约5.0km,南北宽约2.58km,面积12.74km2。2.2 井田储量2.2.1矿井工业储量本井田采用块段法计算的各级储量,块段法是我国目前广泛使用的储量计算方法之一。计算说明:本井田主要可采煤层稳定,煤层产状平缓,且工程点分布比较均匀,故储量估算方法采用地质块段的算术平均法,由计算机直接估算和cad软件辅助计算本矿井工业储量。计算公式:Q=Smd (2-1)式中
30、:Q块段的储量(Mt)。估算结果以Mt为单位;S块段的水平面积k(m2)。由于煤层倾角均小于13,故采用水平投影面积作为储量的估算面积;m块段的煤层储量估算平均厚度(m)。由于煤层倾角均小于13,故用煤层伪厚度(铅垂厚度)作为储量的估算厚度,参与储量的估算。d煤层的视(相对)密度(t/m3)。2-3煤层采用1.43 t/m3。表2-1 矿井高级储量比例地质开采条件储量级别比例()简单中等复杂大型中型小型大型中型小型中型小型井田内A+B级储量占总储量的比例4035253540202515第一水平内A+B级储量占本水平储量的比例70604060503040不作具体规定第一水平内A级储量占本水平内储
31、量的比例4030153020不作具体规定不要求煤层名称工业储量(Mt)ABA+BCA+B+C2-356.8840.93117.822.7120.48总计56.8840.93117.822.7120.48表2-2矿井工业储量汇总表2.2.2矿井设计储量矿井工业储量减去设计计算的断层煤柱、防水煤柱、井田边界煤柱和已有的地面建筑物、构筑物需要留设的保护煤柱等永久煤柱损失量后的储量。计算公式如下:P (2-2)式中: Z矿井设计储量;Z矿井工业储量;P 永久煤柱损失量由此:矿井设计储量=工业储量永久煤柱损失永久煤柱包括井田境界、断层、铁路桥、村庄保护煤柱;井田范围内的地面上没有大的村庄、铁路桥等地面建
32、筑物、构筑物,主要分布的是农田,在此不用考虑地面建筑物保护煤柱的留设问题,只考虑边界煤柱的留设和断层。井田境界煤柱的留设:井田境界煤柱均留设20m,断层煤柱留设20 m。总的损失煤量为l P2.595 (Mt)故矿井设计储量=工业储量永久煤柱损失 (2-3) 120.482.595 117.885(Mt)2.2.3矿井设计可采储量矿井设计储量减去工业场地保护煤柱、井下主要巷道及上、下山保护煤柱处理后乘以采区回采率的储量。矿井设计可采储量计算公式如下:矿井设计可采储量=(矿井设计储量保护煤柱损失)采区回采率保护煤柱为:工业场地、风井场地、主要巷道保护煤柱。因工业场地、矿井井下主要巷道等煤柱损失与
33、井田开拓方式、采煤方法有关,其煤柱损失量待第三章井田开拓、第四章采煤方法确定后才能够确定。为了便于利用矿井可采储量初步确定矿井井型,上述永久煤柱损失与工业场地、井下主要巷道煤柱损失等可暂按工业储量的5-7%计入。井筒及工业场地保护煤柱留设:按规范规定,年产1.20Mt/a的大型矿井,工业场地占地面积指标为0.9公顷/10万吨。S=0.912=10.8公顷=1.0810 5 m2设其沿倾向边长为300m,走向边长为360m。根据建筑物级别围护带宽取20m。各种保护煤柱损失量及可采储量见表2-2。矿井工业广场保护煤柱设计计算参数见表2-3;矿井工业广场保护煤柱留设见图2-1。 表2-2 矿井可采储
34、量计算表 煤层名称工业储量(A+B+C)(Mt)矿井设计储量(Mt)矿井可采储量(Mt)永久煤柱损失设计储量设计煤柱损失可采储量断层煤柱境界煤柱构筑物煤柱其他煤柱工业场地煤柱井下巷道煤柱回采率2-3120.481.021.57500117.8850.2570.5885100.14表2-3工业广场保护煤柱设计参数表煤层倾角() 煤厚(m)埋深(m)()()()()12444044716069根据垂直剖面法计算工业广场保护煤柱,计算如下图2-2-1所示.经计算梯形ABCD的面积为保护煤柱压煤面积,经计算为S=377000m2。保护煤柱压煤量为: (2-4) Q=SM/ cos12=43966941
35、.43/cos12=257.109万吨 式中:S保护煤柱面积,m2; M煤层厚度,m;煤层容重,t/m3煤层倾角,12图2-1 工业广场保护煤柱计算图3 矿井工作制度、设计生产能力及服务年限3.1矿井工作制度3.1.1矿井工作制度矿井设计生产能力按年工作日330d,每日净提升16h计算。每日三班作业,综采工作面可采用每日四班作业,每班工作六小时。根据本矿井的实际情况,本矿采用“四六制”作业方式,这种制度适合本矿采掘作业的特点,有利于保护工人的健康,提高工时利用率,提高设备和工作面的利用率。为搞好安全生产,因此,本矿设计生产实行“四六制”作业方式。3.2矿井设计生产能力及服务年限3.2.1矿井设
36、计生产能力及服务年限矿井生产能力主要根据矿井地质条件、煤层赋存情况、处理、开采条件、设备供应以及国家需煤等因素确定。参考煤矿设计手册各类井型井田的特征,初步确定矿井设计生产能力为1.20Mt/a。矿井服务年限按下式计算: T Z/KA (3-1) 式中:T矿井服务年限,a Z矿井可采储量,Mt A矿井生产能力,Mta K储量备用系数,取1.4. 则 T=100.14/(1.41.20)=69.7a按设计规范规定,井型为1.202.40Mt/a的新建矿井服务年限不得小于50年。经计算后的矿井服务年限为59.6年,可知满足设计规范规定的服务年限 。4 井田开拓4.1 概述由于常村煤矿水文地质条件中
37、等,井田范围里没有煤层露头,煤层埋藏较深;采用斜井开拓需要划分两个水平,以至所建开拓巷道较多,况且要给它留较多煤柱,所以选择用立井开拓。立井开拓适应性较强,一般不受煤层倾角、厚度、瓦斯、水文等地质条件的影响。立井开拓井筒短,提升能力大,对辅助提升特别有利。影响设计矿井开拓的主要因素:井田地质和水文地质条件(特别是表土层情况);煤层赋存和开采技术条件;地形地貌和地面外部条件;技术装备和工艺系统条件;施工技术和设备条件。4.2 井田开拓4.2.1对井田开拓中若干问题分析1、井田内采盘区划分及开采水平数目及位置:井田内的主采煤层为2-3煤层,根据2-3煤层赋存状况,煤层为倾角为9-13,平均倾角11
38、,井田走向长,倾向的高差不大,随意井田不用划分阶段,故可将井田直接划分为盘区。采煤工作面沿煤走向推进,即采用走向长壁采煤法。2-3煤层的生产能力为:可采储量100.14,服务年限59.6a。2、井筒形式、数目及其配置(1)井筒形式的选择平硐开拓的优点是运输环节少,设备少,系统简单,费用低,但受地形及埋藏条件限制,只适用于赋存较高的山岭、丘陵或沟谷地带,并且要便于布置工业场地。斜井开拓与立井开拓相比,井筒施工工艺、施工设备与工序比较简单,掘进速度快,井筒施工单价低,初期投资少;地面工业建筑、井筒装备、井筒装备、井底车场及硐室都比立井简单,井筒延深施工方便,对生产干扰少,不易受底板含水层的威胁;主
39、提升胶带化有相当大的提升能力,可满足特大型矿井主提升的需要;斜井井筒可作为安全出口,井下一旦发生透水事故等,人员可迅速从井筒撤离。与立井开拓相比,斜井开拓的缺点是:斜井井筒长,辅助提升能力少,提升深度有限;通风路线长、阻力大,管线长度长;斜井井筒通过富含水层、流砂层施工技术复杂。对井田内煤层埋藏不深,表土层不厚,水文地质情况简单,井筒不需特殊法施工的缓斜和倾斜煤层,一般可采用斜井开拓。根据自然地理条件和常村矿区实际情况,表土层较浅,煤层赋存较深,所以采用立井开拓方式。立井开拓井筒短,提升速度快,提升能力大,通风有效断面大,能够满足矿井通风的需要。而采用斜井开拓掘进费用低,建井工期短,投产快,可
40、以实现煤的连续运输,具体选择要做后续比较。4.2.2井筒位置的确定1.井筒位置的确定原则(1)有利于第一水平的开采,并兼顾其他水平,有利于井底车场和主要运输大巷的布置,石门的工程量要尽量少;(2)有利于首采采区布置在井筒附近的富煤阶段,首采区要尽量少迁村或不迁村;(3)井田两翼的储量基本平衡;(4)井筒不宜穿过厚表土层、厚含水层、断层破坏带、煤与瓦斯突出煤层或软弱岩层;(5)工业广场应充分利用地形,有良好的工程地质条件,且避开高山、低洼和采空区,不受崖崩滑坡和洪水的威胁;(6)工业场地宜少占耕地,少压煤;(7)水源、电源较进,矿井铁路专用线短,道路布置合理。2.井筒位置的确定考虑以上井筒位置确
41、定原则,并结合矿井实际情况,最终确定主、副井筒位于井田的中部,有利于减少整个矿井运输量。4.2.3工业广场的位置工业场地的选择主要考虑以下因素:尽量位于储量中心,使井下有合理的布局;占地要少,尽量做到不搬迁村庄;尽量布置在地质条件较好的区域,同时工业场地的标高要高于最高洪水位;尽量减少工业广场的压煤损失。根据实际情况和设计规范要求,工业广场为10.8公顷,布置为矩形,倾向长为360米,另一边为300米。4.2.4 方案比较(1)提出方案根据以上分析,现提出一下三种技术上可行的开拓方案,分述如下:方案一:立井单水平开拓。主副井井筒均为立井,布置与井田中央,设在-10水平上,布置一个东风井,大巷与上下上均沿煤层底板布置。如图4-1所示图4-1方案一 立井单水平开拓1主井;2副井3轨道大巷4胶带运输大巷方案二:主斜副立两水平开拓(主井位于井田中央,副井位于井田北部)斜井提煤运输能力大,立井辅助运输能力大,为此提出主井采用斜井开拓,副井采用立井开拓。大巷与上下上均沿煤层底板布置。如图4-2所示图4-2方案二 主斜副立两水平开拓(主井位于井田中央,副井位于井田北部边界)1主井;2副井3轨道大巷4胶带运输大