1、第一课时:长方体的认识 学习目标:1、初步认识立体图形,认识长方体的特征。2、通过观察、想象、动手操作等活动,进一步发展空间观念。3、继续培养学生学习数学的兴趣,进一步形成用于探索、善于合作交流的学习品质。学习重点:掌握长方体特征。一、自主学习:(准备一个长方体模型,观察。)1、长方体有( )个面,每个面都是()形,也可能有()个相对面是()形,长方体有( )个顶点。2、用上下、前后、左右标在长方体的面上,然后沿着棱剪开,比一比,( )的两个面是完全相同的。3、用尺量一量,长方体( )的棱长度相等。4、相交于同一个顶点的三条棱的长度分别叫做长方体的()、()、()。3cm4cm5cm7cm4c
2、m2cm3cm3cm6cm5、说出下面每个长方体的长、宽、高各是多少?二、合作探究、交流展示(讨论自主学习中存在的问题,组内进行互帮活动。)1、长方体的12条棱可以分( )组,每组棱的长度( ) 。2、长方体最多有( )个面是正方形。3、概括长方体的特征。长方体是由( )个长方形,特殊情况有两个相对的面是( )形。围成的( )图形。在一个长方体中,相对的面( ),相对的棱的长度( )。三、过关检测(一)填空:1、量一量自己手中的长方体的长、宽、高。长方体的长是( )厘米,宽是( )厘米,高是( )厘米。12条棱长的和是( )厘米。长方体前面与( )面完全相同 ,面积都是( )平方厘米。右面与(
3、 )面完全相同,面积都是( )平方厘米,还有( )面与( )面完全相同,面积都是( )平方厘米。2、一个长方体,它的长、宽、高分别是9厘米,3厘米和2.5厘米,它上面的面长是( )厘米,宽( )厘米,左边的面长( )厘米,宽( )厘米,相交于一个顶点的三条棱长和是( )厘米。(二)、判断。正确的在括号里画,错误的画。1、长方体的六个面一定是长方形。( )2、一个长方体(非正方体)最多有四个面面积相等。( )(三)、运用。1、一个长方体,长5厘米,宽3.5厘米,高2厘米。这个长方体的棱长总合是多少厘米?2、一个长方体的棱长总和是96厘米。它的长、宽、高的和是多少厘米?3、小卖部要做一个长2.2m
4、,宽40m,高80m的玻璃柜台,现要在柜台各边都安上角铁,这个柜台需要多少米角铁?4、如果用一根长72厘米的铁丝做一个宽4厘米,高6厘米的长方体框架,长是多少厘米?教后反思:第二课时:正方体的认识学习目标:(1)通过观察和操作等教学活动,使学生认识正方体,掌握正方体的特征。(2)通过观察和比较,弄清长方体和正方体之间的联系和区别。(3)通过学习活动,培养学生的操作能力,发展学生的创新意识和空间观念。教学重点:长方体的特征及长、正方体的异同点。学生准备:长方体和正方体纸盒各一个。一、自主学习:准备一个正方体模型,观察。1、正方体有( )个面,( )条棱,( )个顶点。2、正方体的6个面的特征(
5、)。3、正方体的12条棱的特征( )。得出:正方体是由()个完全相同的正方形围成的立体图形。二、合作探究、交流展示1、正方体是由( )个( )的正方形围成的( )图形。正方体也有( )条棱,它们的长度( )。正方体也有( )个顶点。2、长方体和正方体的异同点面棱顶点面的形状棱长长方体正方体从比较中可以看出,正方体和长方体有什么关系?三、过关检测(一)填空起跑线1、棱长是3厘米的正方体,棱长总和是( )厘米。2、正方体有( )个面,每个面都是( )形,6个面的面积( ),12条棱的长度( ),它是特殊的( )体。3、长方体框架根据相对位置关系,可以分成( )组,每组有( )条。(二)、法官我来当
6、 1、长方体每个面都是长方形。( )2、正方体是特殊的长方体。( )3、长方体六个面中,不可能有正方形。( )4、一个正方体的棱长总和是36厘米,棱长是3厘米。( )(三)、看你行不行1、为迎接“五一”国际劳动节,工人叔叔要在工人俱乐部四周装上彩灯(地面四边不装),已知工人俱乐部的长90m,宽55m,高是20m,工人叔叔至少需要多长的彩灯泡?2、一根铁丝围成了一个长为6cm、宽4cm、高2cm的长方体的框架。这根铁丝长多少厘米?如果用这根铁丝围成一个正方体的框架,这个正方体的棱长是多少厘米?教后反思:第三课时:长方体的表面积学习目标:1、通过操作,使学生理解长方体表面积的概念,并初步掌握长方体
7、表面积的计算方法。2、会用求长方体表面积的方法解决生活中的简单问题。3、培养学生的分析能力,同时发展他们的空间观念。教学重点:长方体的表面积教学难点:长方体的表面积计算方法。一、自主学习1、说出长方形面积的计算公式。( )2、填空(1)、长方体有( )个面,一般都是( ),相对的面的( )相等;(3)、这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;3、看图回答。 (1)指出这个长方体的长、宽、高各是多少? (2)哪些面的面积相等? (3)上、下两个面的长是( ),宽是( ),面积是( );左、右下两个面的长是( ),宽是( ),面积是( );前、后下两
8、个面的长是( ),宽是( ),面积是( );(4)这个长方体的表面积是( )。4、小结:在一个长方体中,( )面面积相等,每个面的面积都等于:( )( )面面积相等,每个面的面积都等于:( )( )面面积相等,每个面的面积都等于:( ) 长方体的表面积就是( )个面的总面积。5、长方体的表面积= 二、合作探究、交流展示1、看图并回答。(1)前面和后面的面积需要哪两个条件?怎样求?(2)5cm和3cm这两个条件,可以求出哪个面的面积?(3)要求左面和右面的面积,需要哪两个条件?怎样求?(4)这个长方体的表面积怎样求?三、过关检测1、一个长4分米,宽2分米.高2分米的长方体,它占地面积最大是( )
9、,表面积是( )。2、一个包装盒长40厘米,宽25厘米,高6厘米.做500个这样的包装盒至少要硬纸板多少平方米?3、一玻璃鱼缸的形状是长方体,长1.2米,宽0.4米,高0.6米.制作这个鱼缸至少要玻璃多少平方米?(注意:玻璃鱼缸没有盖,要算几个面呀?)教后反思:第四课时:正方体的表面积学习目标:1、根据正方体特征,理解并掌握正方体表面积的计算方法。2、能应用所学的知识灵活解决生活中的一些实际问题。3、体会所学知识与现实的联系,培养学生的应用意识。教学重点:正方体的表面积教学难点:正方体的表面积计算方法。一、自主学习1、看图并回答 (1)什么是长方体的表面积?(2)怎样计算这个长方体的表面积?2
10、、自学课本35页例2。思考:要求包装这个礼品盒至少用多少平方分米的包装纸,实际是求( )。题中的棱长就是每个面的( )。正方体的6个面的面积( )。怎样求正方体的表面积呢?二、合作探究。1、正方体的表面积就是( )个面的面积之和,即正方体的表面积( )( )( )2、如果用字母表示正方体表面积的计算方法,用s表示正方体的表面积,a表示正方体的棱长,那么正方体表面积的计算方法可以写( )3、讨论下面各种计算应该考虑几个面制作一个无盖的铁皮水桶:( )粉刷教室四面墙壁和顶棚:( )给长方体罐头盒的4壁贴上一圈商标纸:( )给会客厅的大立柱刷油漆:( )给水池抹水泥:( )实际生产和生活中,有时要根
11、据实际需要计算长方体或正方体中某几个面的面积之和。所以在求表面积时,要联系实际生活。如:油箱、罐头等都是( ) 个面,游泳池、鱼缸等都是( )个面。三、过关检测(一)、填空。1、正方体的棱长是8分米,这个正方体的棱长之和是( )分米,表面积是( )。(二)、看你行不行。1、一个正方体木箱,棱长5dm,在它的表面涂漆,涂漆的面积是多少?如果每平方分米用油漆8克,涂这个木箱要用油漆多少克?2、用一根长72cm的铁丝做一个尽可能大的正方体框架,然后在它的表面糊纸,至少要用多少纸?3、一个正方体玩具的表面积是48cm ,它的一个面的面积是多少平方厘米?4、一间长8米,宽6米,高3米教室,门窗面积是11
12、.4平方米,要粉刷四壁和房顶面,粉刷面积是多少平方米?.如果每平方米需费用4元,至少要花费多少元?第五课时:长方体和正方体表面积练习课学习目标:1、进一步理解长方体、正方体表面积的概念,能正确分析有关实际应用的问题。2、能正确解答长方体、正方体表面积实际应用的问题,提高分析解题的能力。3、通过练习养成认真分析的良好习惯,培养数感。学习重点:通过练习进一步掌握长方体、正方体表面积的算法。一、判断:1、每个面积单位之间的进率是100。( )2、把两个一样的正方体拼成一个长方体后,表面积不变。( )3、正方体六个面都是正方形,长方体的六个面都是长方形。( )4、如果一个长方体和一个正方体棱长和相等,
13、那么它们的表面积一定相等。( )5、把一块横截面积是6cm2长方体木块锯成3个小长方体,表面积比原来增加了12 cm2。( )二、选择题:1、做一个水箱需要多少铁皮也就是求水箱的( ) A、体积 B、 容积 C、表面积2、做一个长方体抽屉,需要( )块长方形木板。 A、 4 B、 5 C、 63、一个正方体的棱长扩大2倍,它的表面积( )。 A、 扩大2倍 B 、扩大4倍 C、 扩大6倍4、做一个长方体的通风管,大约用360( )铁皮。 A、 米 B 、平方米 C 、分米三、填空:1、一个长方体的长是6厘米,宽是5厘米,高是4厘米,它的上面的面积是( )平方厘米;前面的面积是( )平方厘米;右
14、面的的面积是( )平方厘米。这个长方体的表面积是()平方厘米。2、一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。3、判断一下,下面各种物体的计算应考虑几个面的面积:给长方体罐头盒的四壁贴上一圈商标纸( ),给水池抹水泥( ),制作一个无盖的铁皮水桶( ),给会客厅的大柱子刷油漆( ),粉刷教室( )4、用一根长24分米的铁丝,做一个正方体的框架,如果在它的表面糊一层纸,纸的面积至少是( )。四、解决问题:1、一个无盖的长方体木盒,长60cm,宽15cm,高35cm。它的占地面积是多少?如查把它的外面涂上红漆,涂漆的面积是多少平方厘米?2、学校电脑室
15、铺了1800块长40cm,宽20cm,厚1cm的地砖,这个电脑室的面积是多少平方米?3、有一种无盖的玻璃鱼缸,长20厘米,宽15厘米,高10厘米,做这样一对鱼缸需要多少平方厘米的玻璃?4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块?5、一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?6、用72分米长的铁丝做一个正方体的框架,然后在外面贴上一层纸,至少需要多少平方分米的纸?7、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?8、一个面的面积是36平方米的
16、正方体,它所有的棱长的和是多少厘米? 9、一个游泳池,长25米,宽10米,深2.4米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是2分米的正方形,那么至少需要这种瓷砖多少块?10、一个长方体通风管,长4米,宽和高都是20厘米。做100根这样的通风管,至少需要铁皮多少平方米?11、一个长方体的水池的长是18米,宽是12米,深是2.5米,在它的四周和底面抹上水泥,水泥的面积多少平方米?12、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?教后反思:第六课时:体积和体积单位学习
17、目标:1、理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。2、知道计量一个物体的体积有多大,要看它包含多少个体积单位。教学重点:体积的含义和常用的体积单位。一、自主学习1、1米、1分米、1厘米是( )单位。1平方米、1平方分米、1平方厘米是( )单位。2、乌鸦是怎样喝到水的?说明了什么?3、电视机 影碟机 手机哪个所占的空间大?哪个体积最大?哪个最小?4、物体所占空间的大小叫做( )二、合作探究、交流展示1、比较:用学生手中的文具比。谁的体积大?谁的体积小?2、体积单位:(1)、 测量长度要用( )单位,测量面积要用( )单位,测量体积要用( )单位。 3、
18、认识体积单位: 常用的体积单位有:( )、( )、( )。 4、认识立方厘米:棱长是( )的正方体,体积是1立方厘米。如( )、 的体积是1立方厘米。5、认识立方分米:棱长是( )的正方体,体积是1立方分米。如 ( ) 的体积是1立方分米。6、认识立方米:棱长是( )的正方体,体积是1立方米。如( )、的体积是1立方米。三、归纳整理请同学们把这堂课学习的内容整理一下,你学到了什么?1、_叫做物体的体积。2、常用的体积单位有_。3、长度单位是用计量: ;面积单位是用计 量: ;体积单位是用来计量物体: 。四、过关检测1、判断(1)、一个1立方厘米的物体一定是正方体。( )(2)、一千克重的铁块和
19、棉花的体积也一样大。( )(3)、小明口渴了一口气喝了2立方米的水。( )(4)、一张长方形的纸虽然很薄,但因为它有厚度,所以它也有体积。( )2、填空。(1)、( )叫做物体的体积。(2 )、计量体积要用体积单位,常用的体积单位有( )、( )、( ),可以分别写成( )、( )、( )。3、用多大的体积单位表示下面物体的体积比较适当?(1)、一块橡皮的体积约是8 ( )(2)、一台录音机的体积约是 20 ( )(3)、五年级语文课本的体积约是297( )(4)、一个蓄水池的体积是4.2 ( )4、用12个棱长1厘米的正方体木块摆成不同形状的长方体。有多少种不同的摆法?它们的长、宽、高各是多
20、少?体积各是多少?教后反思:第七课时:长方体、正方体的体积计算方法学习目标:理解长方体和正方体体积公式的推导,能运用公式进行计算。学习重点:长方体、正方体体积公式的推导。学习难点:运用公式计算。一、自主学习1、( )叫物体的体积。2、常用的体积单位有( )、( )、( )。3、长方形的面积计算公式是( )。二、合作探究1、小组合作(1)、请同学们任意取出几个立方厘米的正方体在小组里合作摆出一个长方体,边摆边想:你们是怎么摆的?你们摆出的长方体体积是多少? 完成下面的表格长宽高小正方体块数长方体的体积(2)、小组交流:长方体所含小正方体的个数,与它的长、宽、高有什么关系?(3)、观察、讨论、发现
21、:长方体体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的( )。(4)如何计算长方体的体积?长方体体积 ( )字母公式: ( )2、 运用长方体体积计算公式解决问题一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?3、导出正方体体积公式:根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?正方体体积( ) ( )( )字母公式: ( )4、独立尝试解决问题一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?三、过关检测1、填表长方体长/分米宽/分米高/分米体积(立方分米)512 435 1024 正方体棱长/米体积(立方米)6 300.4
22、2、一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?教后反思第八课时:长方体和正方体体积计算公式的统一学习目标: 理解 长方体、正方体体积公式,能运用公式进行计算的基础上,进一步研究求长方体、正方体体积的其它计算公式。 学习重点:计算长方体、正方体体积的其它公式。 学习难点: 运用公式进行体积计算 一、 自主学习 1、长方体的体积 ( )字母公式( )正方体的体积 ( )字母公式( )2、计算下面各图形的体积(单位:厘米)8108666二、合作探究 1、长方体或正方体底面的面积叫做( )。长方体和正方体的底面积怎样求呢?长方体的
23、体积 正方体体积 所以长方体和正方体的体积也可以这样来计算: 长方体和正方体的体积= 用字母S表示底面积,则可以写成V = 2、 尝试练习 一根长方体木料,长5厘米,横截面的面积是0.06平方厘米。这根木料的体积是多少? 三、达标检测1、长方体的底面积是24平方厘米,高是5厘米。它的体积是多少?2、家具厂订购500根方木,每根方木横截面的面积是24平方分米,长3米。这根木料一共是多少平方米? 3、一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少?4、有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。5、用15根规格完全相同的木板堆成一个体积是3
24、.6立方米的长方体。已知每根木板宽0.3米,厚0.2米,求每根木板的长。 6、一块长方体的木板,体积是90立方分米。这块木板的长是60分米,宽是3分米。这块木板的厚度是多少分米? 第九课时:长方体体积和正方体体积的练习学习目标:理解 长方体、正方体体积公式,能在运用公式进行计算的基础上,进一步掌握求长方体、正方体体积的其它计算公式。 学习重点:计算长方体、正方体体积的其它公式。 学习难点: 运用公式进行体积计算 一、在( )里填上合适的体积单位1、一块雪糕的体积大约是18( )2、一个苹果的体积大约是120( )3、一个西瓜的体积大约是8( )4、一个讲台的体积大约是1.5( )二、判断1、棱
25、长1分米的正方体,体积是1立方分米( )2 、一个棱长6厘米的正方体,体积和表面积相等( )3、至少要用8个相同的小正方体,才能拼成一个大正方体( )三、我会选择 1、a3( ). A、3a B、aaa C、aaa2、用棱长1cm的正方体小木块拼成一个棱长2cm的正方体,需要这样的小木块( )块。 A、2 B、4 C、83、一个长方体长、宽、高都扩大2倍,体积( )。 A、扩大为原来的4倍 B、扩大为原来的6倍 C、扩大原来的8倍4、一个长方体的体积是24m3,它的长是6m,宽是2m,高是( )。 A、4 B、2 C、65、正方体的棱长扩大为原来的2倍,它的体积就扩大为原来的( )。 A、2倍
26、 B、4倍 C、8倍 D、16倍6、长方体的长、宽、高分别为a、b、h、。如果长增加1,新的长方体体积为( )。 A、abc B、1abc C、(a1)bh D、2abh四、计算下面各图的体积。 1、长12厘米 宽 6厘米 高8厘米2、长8厘米 宽 5厘米 高3厘米3、正方体棱长5分米五、应用题。1、学校要挖一个长方形状沙坑,长4米,宽2米,深0.4米,需多少立方米的黄沙才能填满?2、在一个棱长3分米的立方体水箱中装有半箱水,现把一块石头完全浸没在水中水面上升6厘米,这块石头的体积是多少?3、一个游泳池长28米,宽15米,深18米。它的占地面积是多少平方米?最多能蓄水多少立方米?4、一个密封的
27、长方体玻璃缸,长50厘米、宽30厘米、高20厘米,水深10厘米,如果把玻璃缸向右竖立后,这是水深多少厘米?第十课时:体积单位间的进率学习目标:1.在认识体积单位,知道体积单位与长度单位的联系和区别基础上,学习掌握体积单位间的进率与化、聚方法。2.学习计算重量的解答方法。 学习重点:体积单位的进率。计算物体的重量。 学习难点:体积单位的进率的化聚。 一、自主学习 1、计算体积用( )单位,常用的体积单位有( )、( )、( ) 。2、填空: 1厘米 1平方厘米 1立方厘米( )单位 ( )单位 ( )单位说一说:计算长度用( )单位;计算面积用( )位;计算体积用( )单位。1米=( )分米 1
28、平方米=( )平方分米 1分米=( )厘米 1 平方分米=()平方厘米3、计算(1)、一块长方体泡沫长4.2米,宽3.6米,厚0.4米,它的体积是多少立方米?(2)、一个棱长是3分米的正方体,它的体积是多少立方分米?3、思考:1立方米=( )立方分米 1立方分米=( )立方厘米二、合作探究、交流展示1、体积单位之间的进率:棱长是分米的正方体,体积是( )( )( )( )立方分米。想一想它的体积是多少立方厘米?棱长改用厘米作单位:因为1分米=( )厘米,所以体积是( )( )( )=( )立方厘米底面积是( )平方分米,也就是( )平方厘米,利用体积的计算公式( )( )=( )平方厘米1立方
29、分米= ( )立方厘米2、根据上面的方法,你能推算出1立方米等于多少立方分米吗?棱长是1米的正方体,体积是 ( )立方米棱长改用分米作单位:体积是 ( )立方分米1立方米= ( )立方分米 3、小结: 相邻的体积单位之间的进率是( )。4、填写比较表单位名称相邻两个单位之间的进率长度 面积 体积 三、当堂检测:1、填空5立方米=( )立方分米 1.5立方米=( )立方分米 2400立方分米=( )立方米 12500立方厘米=( )立方分米 3.6立方分米=( )立方厘米 3020立方厘米=( )立方分米2、一块长方体的钢板,长2.5米,长1.6米,厚0.02米。它的体积是多少立方分米?每立方分
30、米的钢重7.8千克。这块钢重多少千克?(注意前后单位统一)。 教后反思:第十一课时:体积单位间的进率的练习课学习目标:1.通过练习,使学生进一步理解和掌握体积单位,面积单位的进率,掌握换算的方法。2.能应用所学知识解决生活中的简单问题,发展学生的应用意识。学习重点难点:体积单位的进率 一、填空1、常用的体积单位有( ) ( ) ( )。每相邻两个体积的进率都是( )。2、4.25立方米( )立方分米 390立方厘米( )立方分米1.02立方分米( )立方厘米 960立方分米( )立方米84000立方厘米( )立方分米 0.5立方分米( )立方厘米二、解决问题1、砌一道长24米,宽20米,高3米
31、的砖墙,如果用每块体积的18立方分米的砖来砌,一共要这样的砖多少块? 2、一块长方体钢板,长3dm,宽2.5dm,厚16cm,这块钢板的体积是多少立方分米?合多少立方米?3、一块正方体的钢板,棱长是20厘米,每立方分米的钢重8.9千克。这块钢重多少千克?4、一根长方体钢材,长4.8米,横截面是一个边长5厘米的正方形。每立方分米钢重7.8千克,这根钢材重多少千克? 5、一个长方体,长4米,宽3米,高2.4米,它的占地面积最大是多少平方米?表面积是多少平方米?体积是多少立方米?6、一块正方体的石头,棱长是5分米,每立方米的石头大约重2.7千克,这块石头重有多少千克?7、公园要砌一道长15米,宽24
32、厘米、高3米的墙,每立方米需要砖525块,需要买多少块砖? 三、拓展延伸一块长方体铁板重468千克,又知铁板长2米,宽1.5米,厚2厘米。每立方分米的铁板重多少千克?(列方程解答) 教后反思:第十二课时:容积和容积单位间的进率学习目标:、知道容积的意义。 2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。 3、会计算物体的容积。 学习重点:容积的概念;容积与体积的关系。 学习难点:容积单位换算一、自主学习:1、( )叫物体的体积。长方体的体积= 2、常用的体积单位有( )、( )、( )。相邻两个体积单位的进率是( )二、合作探究。1、了解容积的含义。( )通常叫做
33、它们的容积。2、常用的容积单位是( )和( )。字母表示( )和( )。容积单位和体积单位之间有什么关系?计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升3、 1升=( )毫升 1升=( )立方分米 1毫升=( )立方厘米4、长方体或正方体容器容积的计算方法,跟( )的计算方法相同。但是要从容器的( )量长、宽、高。5、一种汽车上的油箱,里面长5dm,宽4dm,高2dm。这个油箱可以装汽油多少升?6、一种正方体铁皮水箱棱长0.8米,这个水箱能装水多少升?(铁皮的厚度略去不计。)7、一个油桶,底面是边长2.5分米的正方形,高3.6分米。把这样的一桶油注入容积是7
34、50毫升的瓶子里,可以装多少瓶? 三、课堂检测:1、填空。2.4L=( )ml 3.5L=( )dm3( )cm3500ml( )L 760ml( )cm3=( )dm38.04dm3=( )L=( )ml 1750cm3=( )ml=( )L2、一种背负式喷雾器,药液箱的容积是14升。如果每分钟喷液700毫升,喷完一箱药需要多少分钟?(动笔解答)3、手扶拖拉机的油箱,从里面量长3分米,宽2.3分米,深1.6分米,这个油箱可以装柴油多少升?每升柴油重0.82千克,求装的柴油重多少千克?(得数保留整数。)教后反思:第十三课时:求不规则物体的体积学习目标:1、使学生进一步熟练掌握求长方体和正方体体
35、积的方法。2、能根据实际情况,应用排水法求不规则物体的体积。3、让学生体会数学与生活的紧密联系。培养学生在实践中的应变能力。 学习重点难点: 运用具体方法来求不规则物体的体积。一、自主学习1、填空0.54L=( )ml=( )cm3 2430ml=( )L=( )dm34L30ml=( )L=( )ml 320ml=( )dm32、判断(1)容积的计算方法以体积的计算方法是完全相同的,但要从里面量长、宽、高。 ( )(2)一个量杯能装水10毫升,我们就说量杯的容积是10毫升。 ( )(3)一个纸盒体积是60立方厘米,它的容积也是60立方厘米。 ( )二、合作探究。1、自主学习51页例6。想: 放入雪花梨前量杯里的水是( )毫升,放入雪花梨后量杯里的水和雪花梨共有( )毫升, 那么雪花梨的体积就等于( )思考:如果量杯中的水是满的,再放入雪花梨的话,杯里的水会( )。 溢出的水的体积正好 ( ) 三、达标检测(一)、填空 2.8 dm3=( ) cm3 720 dm3=( ) m3 0.8L=( )ml 32 cm3 =( ) dm3 51