1、自转与公转自转与公转()上面情景中的转动现象,有什么共同的特征?()钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?()上面情景中的转动现象,有什么共同的特征?()钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?这个定点称为这个定点称为旋转中心旋转中心,转动的角称,转动的角称为为旋转角旋转角。旋转角旋转角旋转中心旋转中心在平面内,将一个图形绕着一个在平面内,将一个图形绕着一个定点定点沿沿某个方向某个方向转动一个角度转动一个角度,这样的图形运,这样的图形运动称为旋转。动称为旋转。AoB 下列现象中属于旋转的有下列现象中属于旋转的有()()个个地下水位逐年下降;地下
2、水位逐年下降;传送带的移传送带的移动;动;方向盘的转动;方向盘的转动;水龙头开关水龙头开关的转动;的转动;钟摆的运动;钟摆的运动;荡秋千运荡秋千运动动.A.2 B.3 C.4 D.5 A.2 B.3 C.4 D.5 练习练习1:1:平移和旋转的异同:平移和旋转的异同:1、相同:都是一种运动;运动前后、相同:都是一种运动;运动前后 不改变图形的形状和大小不改变图形的形状和大小2、不同、不同运动方向运动方向运动量运动量的衡量的衡量平移平移直线直线移动一定距离移动一定距离旋转旋转顺时针或顺时针或逆时针逆时针转动一定的角度转动一定的角度 如图,如果把钟表的指针看做四边形如图,如果把钟表的指针看做四边形
3、AOBC,它绕它绕O点旋转得点旋转得 到四边形到四边形DOEF.在这个旋转过程中:在这个旋转过程中:(1)旋转中心是什么)旋转中心是什么?(2)经过旋转,点)经过旋转,点A、B分别移动到什么位置?分别移动到什么位置?(3)旋转角是什么?)旋转角是什么?(4)AO与与DO的长有什么关系?的长有什么关系?BO与与EO呢?呢?(5)AODAOD与与BOEBOE有什么大小关系?有什么大小关系?议一议议一议旋转中心是旋转中心是O点点D和点和点E的位置的位置AO=DO,BO=EOAOD=BOEAOD=BOEAODAOD和和BOEBOE都是旋转角都是旋转角将等边将等边ABC绕着点绕着点C按某个方向按某个方向
4、旋转旋转900后得到后得到A/B/CA AB BCA/B/将等边将等边ABCABC绕着点绕着点o o按某个方向旋转按某个方向旋转90900 0后得后得到到A A/B B/C CA AB BC.A A/B B/C C/0 0()对应点到旋转中心的距离相等旋转的基本性质旋转的基本性质()旋转不改变图形的大小和形状()图形上的每一点都绕旋转中心沿相同方向转动了相同的角度()任意一对对应点与旋转中心的连线所成的角度都是旋转角例:钟表的分针匀速旋转一周需要钟表的分针匀速旋转一周需要6060分分()指出它的旋转中心;()指出它的旋转中心;()经过()经过2020分,分针旋转了多少度?分,分针旋转了多少度?
5、()分针匀速旋转一周需要()分针匀速旋转一周需要6060分,因此旋转分,因此旋转2020分,分针分,分针旋转的角度为旋转的角度为解:()它的旋转中心是钟表的()它的旋转中心是钟表的轴心轴心;可以看作是一个花瓣可以看作是一个花瓣连续连续4次次旋转旋转所形成的,每次旋转分别等于所形成的,每次旋转分别等于720 ,1440,2160 ,2880思考题:香港区徽可以看作是什么思考题:香港区徽可以看作是什么“基本图案基本图案”通过怎样的旋转而得到的?通过怎样的旋转而得到的?练习2:本图案可以看做是一个菱形通过几次本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?旋转得到的?每次旋转了多少度?
6、也可以看做是二个相邻也可以看做是二个相邻菱菱形通过几次旋转得到的?形通过几次旋转得到的?每次旋转了多少度?每次旋转了多少度?还可以看做是几个还可以看做是几个菱形通菱形通过几次旋转得到的?每次过几次旋转得到的?每次旋转了多少度?旋转了多少度?3个个 1次次 18002次次 1200,2400 5次次 600,1200,1800,2400,30003个个 1次次 600 例例2:如图如图,ABC是等边三角形,是等边三角形,D是是BC上一点,上一点,ABD经过经过 旋转后到达旋转后到达 ACE的位置。的位置。(1)旋转中心是哪一点?)旋转中心是哪一点?(2)旋转了多少度?)旋转了多少度?(3)如果)
7、如果M是是AB的中点,那么经过上述旋的中点,那么经过上述旋转后,点转后,点M转到了什么位置?转到了什么位置?解解:(1)旋转中心是)旋转中心是A;(2)旋转了)旋转了60度度;(3)点)点M转到了转到了AC的中点位置上的中点位置上.思考思考:图形的旋转是由什么图形的旋转是由什么 决定的决定的?图形的旋转是由旋转中图形的旋转是由旋转中心和旋转的角度决定心和旋转的角度决定.课堂回顾:这节课,主要学习了什么?课堂回顾:这节课,主要学习了什么?在平面内,将一个图形绕着一个在平面内,将一个图形绕着一个定点定点沿某个方沿某个方向向转动一个角度转动一个角度,这样的图形运动称为,这样的图形运动称为旋转旋转旋转的概念:旋转的概念:旋转的性质:旋转的性质:1 1、旋转不改变图形的大小和形状、旋转不改变图形的大小和形状2、任意一对对应点与旋转中心的连线所成的、任意一对对应点与旋转中心的连线所成的角度都是旋转角,旋转角相等角度都是旋转角,旋转角相等3、对应点到旋转中心的距离相等、对应点到旋转中心的距离相等