ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:49.50KB ,
资源ID:974724      下载积分:20 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 微信支付   
验证码:   换一换

加入VIP,免费下载资源
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.wodocx.com/d-974724.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(化学工程专业优秀论文氢氧化镁纳米棒的制备和干燥动力学研究.doc)为本站会员(风****)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(发送邮件至2622162128@qq.com或直接QQ联系客服),我们立即给予删除!

化学工程专业优秀论文氢氧化镁纳米棒的制备和干燥动力学研究.doc

1、 化学工程专业优秀论文 氢氧化镁纳米棒的制备和干燥动力学研究关键词:纳米材料 纳米棒 氢氧化镁摘要:氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧化镁不同,表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或燃煤固硫剂,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则可大大减少这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目前氢氧化镁纳米棒的制

2、备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液相法制备氢氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良好的氢氧化镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱的种类、反应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XRD)、扫描电子显微镜

3、(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较小的氢氧化镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,氢氧化钠初始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径100-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、尿素、轻质氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干燥动力学实验得到三种

4、形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升速、恒速和降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究了硬脂酸的用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效果最好,改性时间约1小时为佳。正文内容 氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧化镁不同,

5、表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或燃煤固硫剂,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则可大大减少这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目前氢氧化镁纳米棒的制备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液相法制备氢

6、氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良好的氢氧化镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱的种类、反应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较小的氢氧化

7、镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,氢氧化钠初始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径100-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、尿素、轻质氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干燥动力学实验得到三种形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升速、恒速和

8、降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究了硬脂酸的用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效果最好,改性时间约1小时为佳。氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧化镁不同,表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或燃煤固硫剂

9、,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则可大大减少这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目前氢氧化镁纳米棒的制备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液相法制备氢氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良好的氢氧化

10、镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱的种类、反应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较小的氢氧化镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,氢氧化钠初

11、始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径100-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、尿素、轻质氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干燥动力学实验得到三种形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升速、恒速和降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究了硬脂酸的

12、用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效果最好,改性时间约1小时为佳。氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧化镁不同,表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或燃煤固硫剂,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则可大大减少

13、这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目前氢氧化镁纳米棒的制备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液相法制备氢氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良好的氢氧化镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱的种类、反

14、应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较小的氢氧化镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,氢氧化钠初始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径100-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、尿素、轻质

15、氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干燥动力学实验得到三种形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升速、恒速和降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究了硬脂酸的用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效

16、果最好,改性时间约1小时为佳。氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧化镁不同,表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或燃煤固硫剂,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则可大大减少这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目前氢氧化镁纳米棒的制备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉

17、淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液相法制备氢氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良好的氢氧化镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱的种类、反应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁

18、前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较小的氢氧化镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,氢氧化钠初始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径100-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、尿素、轻质氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干燥动力学实验得到三种形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的

19、平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升速、恒速和降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究了硬脂酸的用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效果最好,改性时间约1小时为佳。氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧化镁不同,表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃

20、剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或燃煤固硫剂,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则可大大减少这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目前氢氧化镁纳米棒的制备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液相法制备氢氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制

21、备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良好的氢氧化镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱的种类、反应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较小的氢氧化镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳

22、米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,氢氧化钠初始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径100-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、尿素、轻质氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干燥动力学实验得到三种形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升速、恒速和降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。

23、 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究了硬脂酸的用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效果最好,改性时间约1小时为佳。氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧化镁不同,表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或燃煤固硫剂,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充

24、量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则可大大减少这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目前氢氧化镁纳米棒的制备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液相法制备氢氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良好的氢氧化镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化

25、钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱的种类、反应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较小的氢氧化镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,氢氧化钠初始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径10

26、0-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、尿素、轻质氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干燥动力学实验得到三种形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升速、恒速和降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究了硬脂酸的用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/

27、气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效果最好,改性时间约1小时为佳。氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧化镁不同,表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或燃煤固硫剂,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则可大大减少这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目

28、前氢氧化镁纳米棒的制备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液相法制备氢氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良好的氢氧化镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱的种类、反应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XR

29、D)、扫描电子显微镜(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较小的氢氧化镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,氢氧化钠初始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径100-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、尿素、轻质氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干

30、燥动力学实验得到三种形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升速、恒速和降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究了硬脂酸的用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效果最好,改性时间约1小时为佳。氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧

31、化镁不同,表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或燃煤固硫剂,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则可大大减少这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目前氢氧化镁纳米棒的制备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液

32、相法制备氢氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良好的氢氧化镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱的种类、反应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较

33、小的氢氧化镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,氢氧化钠初始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径100-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、尿素、轻质氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干燥动力学实验得到三种形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升

34、速、恒速和降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究了硬脂酸的用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效果最好,改性时间约1小时为佳。氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧化镁不同,表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或

35、燃煤固硫剂,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则可大大减少这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目前氢氧化镁纳米棒的制备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液相法制备氢氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良

36、好的氢氧化镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱的种类、反应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较小的氢氧化镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,

37、氢氧化钠初始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径100-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、尿素、轻质氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干燥动力学实验得到三种形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升速、恒速和降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究

38、了硬脂酸的用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效果最好,改性时间约1小时为佳。氢氧化镁纳米棒的光、电、热、磁等物理性质与常规氢氧化镁不同,表现出许多新奇特性,应用十分广泛,可作为橡胶、塑料、纤维和树脂等高分子材料的阻燃剂,也可用来生产高档的纳米氧化镁陶瓷粉体,环保行业中的废水中和剂、烟道气脱硫剂或燃煤固硫剂,亦可用作电子材料和医药制剂的添加材料等。普通氢氧化镁在作为阻燃剂使用时,其填充量一般在50以上,这必然会影响到基体材料的机械力学性能。如果采用氢氧化镁纳米棒则

39、可大大减少这方面的负面影响,因为氢氧化镁纳米棒的填充效果要远优于普通或零维纳米氢氧化镁。目前氢氧化镁纳米棒的制备逐渐成为研究热点之一。氢氧化镁纳米棒的制备方法以液相法为主,如直接沉淀法、反向沉淀法等;还有些其他方法,如:液固电弧放电法、液相脉冲激光烧蚀法等。液相法制备氢氧化镁纳米棒,反应条件难以控制,收率较低;而液固电弧放电法和液相脉冲激光烧蚀法制备条件苛刻,对设备要求高。因此,本论文通过单因素实验试图寻求一种工艺简单、形貌良好的氢氧化镁纳米棒制备方法,并对其表面改性进行了初探。 以碱式氯化镁纳米棒为前驱物,氢氧化钠为沉淀转化剂,采用沉淀转换法制得氢氧化镁纳米棒。通过单因素实验,研究了溶剂、碱

40、的种类、反应物摩尔比、氢氧化钠浓度等因素对氢氧化镁纳米棒形貌的影响。通过X-射线衍射(XRD)、扫描电子显微镜(SEM)等手段对产物进行了检测与表征。结果表明:反应溶剂和碱式氯化镁前驱物的形貌是氢氧化镁纳米棒形貌的主要影响因素。溶剂为纯乙醇时,有利于得到直径较小的氢氧化镁棒:选用直径小的碱式氯化镁可得到直径较小的氢氧化镁纳米棒。实验确定了氢氧化镁纳米棒制备的最佳工艺条件为:溶剂为无水乙醇,氢氧化钠与碱式氯化镁的摩尔比为2:1,氢氧化钠初始浓度为2tool/L,反应温度60,反应时间1h。在最佳工艺条件下得到直径100-200nm,长度6 u m,结晶良好的氢氧化镁纳米棒单晶体。 以六水氯化镁、

41、尿素、轻质氧化镁和氨水为原料,采用液相法制备出三种具有不同形貌和尺寸的氢氧化镁产物。通过干燥动力学实验得到三种形貌氢氧化镁的干燥曲线和干燥速率曲线;测定出三种形貌氢氧化镁在室温下的平衡水分吸附等温线。研究结果表明:三种形貌氢氧化镁的干燥速率曲线形状相似,都有升速、恒速和降速三个阶段;氢氧化镁纳米片的初始含水量、临界含水量和平衡含水量均高于微米颗粒。 以氢氧化镁纳米棒为原料,硬脂酸为改性剂,对氢氧化镁纳米棒进行改性实验。主要研究了硬脂酸的用量和改性时间对氢氧化镁纳米棒改性效果的影响。通过X-射线衍射(XRD)、红外/气相色谱联用系统等手段对产品进行了表征与检测。 结果表明:硬脂酸的用量为氢氧化镁质量的5效果最好,改性时间约1小时为佳。

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922