ImageVerifierCode 换一换
格式:DOC , 页数:44 ,大小:1.61MB ,
资源ID:971808      下载积分:20 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 微信支付   
验证码:   换一换

加入VIP,免费下载资源
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.wodocx.com/d-971808.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(东华理工大学概率论与数理统计练习册答案.doc)为本站会员(风****)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(发送邮件至2622162128@qq.com或直接QQ联系客服),我们立即给予删除!

东华理工大学概率论与数理统计练习册答案.doc

1、 第一章 概率论的基本概念一、选择题1答案:(B)2. 答案:(B)解:AUB表示A与B至少有一个发生,-AB表示A与B不能同时发生,因此(AUB)(-AB)表示A与B恰有一个发生 3答案:(C)4. 答案:(C) 注:C成立的条件:A与B互不相容.5. 答案:(C) 注:C成立的条件:A与B互不相容,即.6. 答案:(D) 注:由C得出A+B=.7. 答案:(C)8. 答案:(D) 注:选项B由于9.答案:(C) 注:古典概型中事件A发生的概率为.10.答案:(A)解:用A来表示事件“此个人中至少有某两个人生日相同”,考虑A的对立事件“此个人的生日各不相同”利用上一题的结论可知,故.11.答

2、案:(C)12.答案:(B)解:“事件A与B同时发生时,事件C也随之发生”,说明,故;而故.13.答案:(D)解:由可知故A与B独立.14.答案:(A)解:由于事件A,B是互不相容的,故,因此P(A|B)=.15.答案:(D)解:用A表示事件“密码最终能被译出”,由于只要至少有一人能译出密码,则密码最终能被译出,因此事件A包含的情况有“恰有一人译出密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译出密码”,情况比较复杂,所以我们可以考虑A的对立事件“密码最终没能被译出”,事件只包含一种情况,即“四人都没有译出密码”,故.16.答案:(B)解:所求的概率为注:.17.答案:(A)解:

3、用A表示事件“取到白球”,用表示事件“取到第i箱”,则由全概率公式知.18.答案:(C)解:用A表示事件“取到白球”,用表示事件“取到第i类箱子”,则由全概率公式知.19.答案:(C)解:即求条件概率.由Bayes公式知.二、填空题1.(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)2.或30.3,0.5解:若A与B互斥,则P(A+B)=P(A)+P(B),于是P(B)=P(A+B)-P(A)=0.7-0.4=0.3;若A与B独立,则P(AB)=P(A)P(B),于是由P(A+B)=P(A)+P(B)-P(AB)=P

4、(A)+P(B)-P(A)P(B),得.4.0.7解:由题设P(AB)=P(A)P(B|A)=0.4,于是P(AUB)=P(A)+P(B)-P(AB)=0.5+0.6-0.4=0.7.5.0.3解:因为P(AUB)=P(A)+P(B)-P(AB),又,所以.6.0.6解:由题设P(A)=0.7,P()=0.3,利用公式知=0.7-0.3=0.4,故.7.7/12解:因为P(AB)=0,所以P(ABC)=0,于是.8.1/4解:因为由题设,因此有,解得P(A)=3/4或P(A)=1/4,又题设P(A)1/2,故P(A)=1/4.9.1/6解:本题属抽签情况,每次抽到次品的概率相等,均为1/6,另

5、外,用全概率公式也可求解.10.解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为,故所求的概率为.11.3/7解:设事件A=抽取的产品为工厂A生产的,B=抽取的产品为工厂B生产的,C=抽取的是次品,则P(A)=0.6,P(B)=0.4,P(C|A)=0.01,P(C|B)=0.02,故有贝叶斯公式知.12.6/11解:设A=甲射击,B=乙射击,C=目标被击中,则P(A)=P(B)=1/2,P(C|A)=0.6,P(C|B)=0.5,故.三、设A,B,C是三事件,且,. 求A,B,C至少有一个发生的概率。解:P (A,B,C至少有一个发生)

6、=P (A+B+C)= P(A)+ P(B)+ P(C)P(AB)P(BC)P(AC)+ P(ABC)= 四、 。解:由由乘法公式,得由加法公式,得五、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解:A1=男人,A2=女人,B=色盲,显然A1A2=S,A1 A2=由已知条件知由贝叶斯公式,有六、设有甲、乙二袋,甲袋中装有n只白球m只红球,乙袋中装有N只白球M只红球,今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少?(此为第三版19题(1))记A1,A2分别表

7、“从甲袋中取得白球,红球放入乙袋”再记B表“再从乙袋中取得白球”。B=A1B+A2B且A1,A2互斥P (B)=P (A1)P(B| A1)+ P (A2)P (B| A2) =第二章 随机变量及其分布一、选择题1.答案:(B)注:对于连续型随机变量X来说,它取任一指定实数值a的概率均为0,但事件X=a未必是不可能事件.2.答案:(B)解:由于X服从参数为的泊松分布,故.又故,因此.3.答案:(D)解:由于X服从上的均匀分布,故随机变量X的概率密度为.因此,若点,则.,.4 答案:(C)解:由于故由于而,故只有当时,才有;正态分布中的参数只要求,对没有要求.5.答案:(A)解:由于,故,而,故

8、;由于,故.6.答案:(B)解:这里,处处可导且恒有,其反函数为,直接套用教材64页的公式(5.2),得出Y的密度函数为.7.答案:(D)注:此题考查连续型随机变量的概率密度函数的性质.见教材51页.8.答案:(C)解:因为,所以,.9.答案:(B)解:由于,所以的概率密度函数为偶函数,其函数图形关于y轴对称,因此随机变量落在x轴两侧关于原点对称的区间内的概率是相等的,从而马上可以得出.我们可以画出函数的图形,借助图形来选出答案B.也可以直接推导如下:,令,则有10.答案:(A)解:.11.答案:(B)解:.12.答案:(D)解:对任意的;选项C描述的是服从指数分布的随机变量的“无记忆性”;对

9、于指数分布而言,要求参数.13.答案:(A)解:选项A改为,才是正确的;.14.答案:(B)解:由于随机变量X服从(1,6)上的均匀分布,所以X的概率密度函数为.而方程有实根,当且仅当,因此方程有实根的概率为.二、填空题1.2.解:由规范性知.3.解:由规范性知.4.解:因为,所以只有在F(X)的不连续点(x=-1,1,2)上PX=x不为0,且P(X=-1)=F(-1)-F(-1-0)=a,PX=1=F(1)-F(1-0)=2/3-2a,PX=2=F(2)-F(2-0)=2a+b-2/3,由规范性知1=a+2/3-2a+2a+b-2/3得a+b=1,又1/2=PX=2=2a+b-2/3,故a=

10、1/6,b=5/6.5.解:由于,所以X的概率密度为,故.6.;7.解:.8.解:由.90解:故.三、一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X表示取出的三只球中的最大号码,写出随机变量X的分布律解:X可以取值3,4,5,分布律为 也可列为下表X: 3, 4,5P:四、 设随机变量X的分布函数为,求(1)P (X2), P 0X3, P (2X);(2)求概率密度fX (x).解:(1)P (X2)=FX (2)= ln2, P (0X3)= FX (3)FX (0)=1,(2)五、设随机变量的概率密度为求X的分布函数F (x)。解:故分布函数为六、设K在(0,5)上

11、服从均匀分布,求方程有实根的概率 K的分布密度为:要方程有根,就是要K满足(4K)244 (K+2)0。解不等式,得K2时,方程有实根。七、设随机变量X在(0,1)上服从均匀分布(1)求Y=eX的分布密度 X的分布密度为:Y=g (X) =eX是单调增函数又X=h (Y)=lnY,反函数存在且 = ming (0), g (1)=min(1, e)=1 maxg (0), g (1)=max(1, e)= e Y的分布密度为:八、设X的概率密度为求Y=sin X的概率密度。FY ( y)=P (Yy) = P (sinXy)当y0时:FY ( y)=0当0y1时:FY ( y) = P (si

12、nXy) = P (0Xarc sin y或arc sin yX) =当1y时:FY ( y)=1 Y的概率密度( y )为:y0时,( y )= FY ( y) = (0 ) = 00y1时,( y )= FY ( y) = =1y时,( y )= FY ( y) = = 0第三章 多维随机变量及其分布一、选择题1.答案:(A)解:要使是某个随机变量的分布函数,该函数必须满足分布函数的性质,在这里利用这一性质可以得到,只有选型A满足条件.2.答案:(A)解:由可知,故又由联合分布律与边缘分布律之间的关系可知:故.3.答案:(D)解:联合分布可以唯一确定边缘分布,但边缘分布不能唯一确定联合分布

13、,但如果已知随机变量X与Y是相互独立的,则由X与Y的边缘分布可以唯一确定X与Y的联合分布.4.答案:(A)解:由问题的实际意义可知,随机事件与相互独立,故;,而事件又可以分解为15个两两不相容的事件之和,即故.5.答案:(B)解:当时,且X和Y相互独立的充要条件是;单由关于S和关于T的边缘分布,一般来说是不能确定随机变量S和T的联合分布的.6.答案:(C)解:(方法1)首先证明一个结论,若,则.证明过程如下(这里采用分布函数法来求的概率密度函数,也可以直接套用教材64页的定理结论(5.2)式):由于故这表明也服从正态分布,且.所以这里.再利用结论:若与相互独立,且,则.便可得出;;.(方法2)

14、我们还可以证明:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且若,则故;;.7.答案:(A)解:由于,所以,故,而,所以.8.答案:(D)解:由联合概率密度函数的规范性知.9.答案:(A)解:.10.答案:()解:由联合概率密度函数的规范性知12.答案:(C)解:用D表示以(0,0),(0,2),(2,1)为顶点所形成的三角形区域,用G表示矩形域,则所求的概率为.13.答案:(B)解:利用结论:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且若,则因此;.令,由教材64页定理结论中的(5.2)式可知,Z的概率密度函数为,故.二、填空题1.F(b,c)-F(a,c);F(a

15、,b);F(+,a)-F(+,0);F(+,b)-F(a,b).2.3.解:,故.4.05.解:P(X=Y)=P(X=-1, Y=-1)+ P(X=1, Y=1)= P(X=-1)P(Y=-1)+ P(X=1)P(Y=1)=(1/2)(1/2)+ (1/2)(1/2)=1/2;P(X+Y=0)= P(X=-1, Y=1)+ P(X=1, Y=-1)= P(X=-1)(Y=1)+ P(X=1)P(Y=-1)=(1/2)(1/2)+ (1/2)(1/2)=1/2;P(XY=1)=P(X=-1, Y=-1)+ P(X=1, Y=1)= P(X=-1)P(Y=-1)+ P(X=1)P(Y=1)=(1/

16、2)(1/2)+ (1/2)(1/2)=1/2.三、设随机变量(X,Y)概率密度为(1)确定常数k。(2)求P X1, Y3(3)求P (X180=P X1180, X2180, X3180, X4180 =P X1804=1pX1804= (0.1587)4=0.00063第四章 随机变量的数字特征一、选择题1答案:(D)解:由于,所以,故. 2.答案:(D)解: 3.答案:(D)解:,故;,故;,故;,但不能说明X与Y独立. 4.答案:(C)解:由于X,Y独立,所以2X与3Y也独立,故. 5.答案:(C)解:当X,Y独立时,;而当X,Y独立时,故;. 6.答案:(C)解:,当X,Y独立时,

17、可以得到而,即X,Y不相关,但不能得出X,Y独立;,故;,故. 7.答案:(D)解:,即X,Y不相关. 8.答案:(A)解:,即X,Y不相关. 9.答案:(C)解:成立的前提条件是X,Y相互独立;当X,Y相互独立时,有,即成立的充分条件是X,Y相互独立;而即X,Y不相关,所以成立的充要条件是X,Y不相关;. 10.答案:(D)解:由;.11.答案:(B)解:由;是一个确定的常数,所以.12.答案:(D)解:13.答案:(B)解:,故.14.答案:(C)解:.15.答案:(B)解:由于当时,故这里.16.答案:(A)解:由于,所以,又因为,所以,而与的独立性未知,所以的值无法计算,故的值未知.1

18、7.答案:(C)解:由于(X,Y)服从区域上的均匀分布,所以(X,Y)的概率密度为,则.18.答案:(D)解:令,则有,但不一定有.19.答案:(A)解:由题意知,故Y服从参数为3和1/4的二项分布,即,因此.20.答案:(D)解:,只有当X与Y独立时,才有.二、填空题1.解:由题设=,故.2.解:假设P(X=-1)=a,P(X=0)=b,P(X=1)=c,则a+b+c=1,-a+0+c=,a+c=,故a=0.4,b=0.1,c=0.5,即的概率分布是P(X=-1)=0.4,P(X=0)=0.1,P(X=1)=0.5.3. ,;,0, 1.4.解:由题设,故的概率密度函数为.5.解:由题设.6

19、.解:=0+1/6+1/3+1/4+1=7/4;=0+1/6+4/6+9/12+16/4=67/12;=-=67/12-49/16=121/48;=-2+E(1)=-7/2+1=-5/2.7.解:.8.解:由于X服从n=10,p=0.4的二项分布,根据二项分布的性质,EX=np=4,DX=np(1-p)=2.4,故E()= DX+(EX)=18.4.三、设随机变量X的分布为X202Pk0.40.30.3求 E (X),E (3X2+5)解:E (X)= (2)0.4+00.3+20.3=0.2E (X2)= (2)20.4+020.3+220.3=2.8E (3X2+5) = 3E (X2)+

20、 E (5)= 8.4+5=13.4四、设随机变量X的概率密度为求(1)Y=2X(2)Y=e2x的数学期望。解:(1) (2) 五、设随机变量X1,X2的概率密度分别为求(1)E (X1+X2),E (2X13);(2)又设X1,X2相互独立,求E (X1X2)解:(1) = (2) = (3)六、设随机变量X和Y的联合分布为:XY1011001验证:X和Y不相关,但X和Y不是相互独立的。证:P X=1 Y=1=P X=1= P Y=1= P X=1 Y=1P X=1 P Y=1 X,Y不是独立的又E (X )=1+0+1=0 E (Y )=1+0+1=0 COV(X, Y )=EXE (X

21、)YE (Y )= E (XY )EXEY = (1)(1) +(1)1+1(1)+11=0 X,Y是不相关的七、设随机变量(X1,X2)具有概率密度。,0x2,0y2求E (X1),E (X2),COV(X1,X2),解: D (X1+X2)= D (X1)+ D (X2)+2COV(X1, X2) =第五章 大数定理及中心极限定理一、选择题1.(A)2.(C)3.(C)解:设X:炮弹命中的数量,则,由中心极限定理,因此4.(C)注:不意味服从正态分布,不要只看符号形式5.(B) 解:因为服从参数为2的指数分布,故有令,由独立同分布的中心极限定理有二、填空题1. ,2.0三、据以往经验某种电

22、器元件的寿命服从均值为100小时的指数分布,现在随机的抽取16只,设它们的寿命是相互独立的,求这16只元件寿命总和大于1920小时的概率。解:设第i只寿命为Xi,(1i16),故E (Xi )=100,D (Xi )=1002(l=1,2,16).依本章定理1知 从而四、某种电子器件的寿命(小时)具有数学期望(未知),方差2=400 为了估计,随机地取几只这种器件,在时刻t=0投入测试(设测试是相互独立的)直到失败,测得其寿命X1,Xn,以作为的估计,为使问n至少为多少?解:由中心极限定理知,当n很大时 = 所以查标准正态分布表知即n至少取1537。第六章 样本及抽样分布一、选择题1. ( C

23、 )2.(C) 注:统计量是指不含有任何未知参数的样本的函数3.(D)注:当总体服从正态分布时D才成立,当然在大样本下,由中心极限定理有近似服从4.(B)5.(D)对于答案D,由于,且相互独立,根据分布的定义有6(C) 注: 才是正确的.7.(D)8.(C) 注:,才是正确的9.(B) 根据得到10.(A) 解:, 由分布的定义有二、填空题1与总体同分布,且相互独立的一组随机变量2.代表性和独立性3.,4.,5. 0.16.7.8.三、在总体N(52,6.32)中随机抽一容量为36的样本,求样本均值落在50.8到53.8之间的概率。解:四、设X1,X2,Xn是来自泊松分布 ( )的一个样本,S

24、2分别为样本均值和样本方差,求E (), D (), E (S 2 ).解:由X ( )知E (X )= ,E ()=E (X )= , D ()=第七章 参数估计一、选择题1.答案: D.解因为,所以2.答案: D. 解 因为,所以,.3. 答案 A . 解似然函数,由,得.4. 答案 C. 解在上面第5题中用取代即可.5. 答案 A. 解求解同填空第7题.6. 答案 B. 解求解同填空第9题.7. 答案 C. 解因为,且,.8.答案 B. 解求解同上面第9,10题.9答案 D. 解求解同第12题.10.答案 B. 解 的最大似然估计量是.11.答案 A. 解提示:根据置信区间的定义直接推出

25、.12.答案 D. 解同填空题25题.13.答案 B. 解同填空题第28题.14. 答案 A.解因为,所以选A.二、填空题1. 矩估计和最大似然估计;2.,;3. ,;解 (1)矩估计因为=,所以,即的矩估计量.(2)最大似然估计因为,对其求导:.4. , ;解 (1)的矩估计为:样本的一阶原点矩为:所以有:(2)的最大似然估计为:得:.5. ; 解 因为所以极大似然函数,.6. ,; 解 (1) 矩估计:,样本的一阶原点矩为:所以有:.(2)极大似然估计:似然函数,则 .7. ,;解因为,所以令则,.8. ,;9. 数学期望E(X); 解 10. ; 解.11. ; 解 ,所以;12. 14

26、.754,15.146;解 这是方差已知,均值的区间估计,所以有:置信区间为: 由题得: 代入即得:所以为:13. 0.15,0.31; 解 由得:,所以的置信区间为:, ,将,代入得 ,.三、设X1,X1,Xn是来自参数为的泊松分布总体的一个样本,试求的极大似然估计量及矩估计量。解:(1)矩估计 X ( ),E (X )= ,故=为矩估计量。(2)极大似然估计,为极大似然估计量。(其中四、设总体X具有分布律X123Pk22(1)(1) 2其中(0 D (T2)所以T2较为有效。六、 设某种清漆的9个样品,其干燥时间(以小时计)分别为6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.

27、1 5.0。设干燥时间总体服从正态分布N (,2),求的置信度为0.95的置信区间。(1)若由以往经验知=0.6(小时)(2)若为未知。解:(1)的置信度为0.95的置信区间为(),计算得(2)的置信度为0.95的置信区间为(),计算得,查表t0.025(8)=2.3060.第八章 假设检验一、选择题1.B 2.B 3.C 4.B 5.B 6.C 7.B 8.D二、填空题1. 2. 1.176三、某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。设测定值总体服从正态分布,问在 = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值

28、总体XN(, 2), 2均未知步骤:(1)提出假设检验H:=3.25; H1:3.25(2)选取检验统计量为(3)H的拒绝域为| t |(4)n=5, = 0.01,由计算知查表t0.005(4)=4.6041, (5)故在 = 0.01下,接受假设H0四、要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为 =100小时的正态分布。试在显著水平 = 0.05下确定这批元件是否合格?设总体均值为。即需检验假设H0:1000,H1:1000。解:步骤:(1)1000;H1:0.005(2)H0的拒绝域为(3)n=

29、9, = 0.05,S=0.007,由计算知查表(4)故在 = 0.05下,拒绝H0,认为这批导线的标准差显著地偏大。东华理工大学20102011学年第二学期概率论与数理统计期末考试试卷(A1)一、填空题:(本大题共7小题,每小题3分,共21分)-1 1 30.5 0.3 0.2(1) 3 (2) (3) 5 (4) (5)(6) (9.9902, 10.0098)(7) 二、选择题:(本大题共7小题,每小题2分,共14分)三、一座20层的高楼的底层电梯上了10位乘客,乘客从第3层起开始离开电梯,每一名乘客在各层离开电梯是等可能的,求没有两位乘客在同一层离开的概率。(7分)解:设表示事件没有两

30、位乘客在同一层离开,则样本空间包含的样本点数为,事件包含的样本点数为,因此四、已知随机变量,且X与Y相互独立,设(1) 求; (2) 求(12分)解:(1) ; = ; 又因为,所以D(Z)=;(2) = ()则=五、某运输公司有500辆汽车参加保险,在一年内每辆汽车出事故的概率为0.006,每辆参加保险的汽车每年交保险费800元,若一辆车出事故保险公司最多赔偿50000元试利用中心极限定理计算,保险公司一年赚钱少于200000元的概率(8分)附:标准正态分布分布函数表:0.560.570.580.590.71230.71570.71900.7224解:设某辆汽车出事故,则,设表示运输公司一年

31、内出事故的车数则 保险公司一年内共收保费,若按每辆汽车保险公司赔偿50000元计算,则保险公司一年赚钱小于200000元,则在这一年中出事故的车辆数超过4辆因此所求概率为 六、设总体,其中已知,是未知参数是从该总体中抽取的一个样本,求未知参数的极大似然估计量。(8分)解: 当为已知时,似然函数为因而 所以,由似然方程 ,解得,所以的极大似然估计量为。七、设随机变量与的联合密度函数为(1) 求常数 ; (2) 求的边缘密度函数; (8分)解:(1)由得到,解得(2)八、设随机变量密度函数为,求的概率密度。(8分)解:当时,当时,因此九、设某种产品的一项质量指标 ,现从一批产品中随机地抽取16件,测得该指标的均值 以检验这批产品的质量指标是否合格? (8分). 解:设当为真时,检验统计量为,给定显著性水平,拒绝域为.代入数据得,落在拒绝域外,故接受,即质量指标合格. 十、设总体,其中,都是未知参数是从该总体中抽取的一个样本,(6分)(1)试证明为的无偏估计量。(普通班同学解答)(2)假设是已知的,试证明为的无偏估计量。(实验班同学解答)(1)因为, 所以,则,所以为的无偏估计量。(2)因为, 所以,所以 ,所以,;因此, 所以,是未知参数的无偏估计.word文档 可自由复制编辑

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922