ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:268KB ,
资源ID:879176      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 微信支付   
验证码:   换一换

加入VIP,免费下载资源
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.wodocx.com/d-879176.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(气象课程热电偶测温设计.doc)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(发送邮件至2622162128@qq.com或直接QQ联系客服),我们立即给予删除!

气象课程热电偶测温设计.doc

1、热电偶测温系统设计 摘要:热电偶传感器是目前接触式测温中应用最广的热电式传感器,在工业用温度传感器中占有及其重要的地位。该测温系统由温度测量电路、运算放大电路、A/D转换电路及显示电路组成,以89C51单片机为主控单元,由K型镍铬-镍硅热电偶测量热端温度T,测量范围在01200之间,由集成温度传感器AD590测量冷端温度T0,并对测温热电偶的热电势及AD590测得的补偿电势进行采样,送入A/D转换器转换成数字量,存放在单片机内存单元中,经程序解算后得到温度值,转换为BCD码,同时驱动四位数码管显示。试验结果显示,该系统对温度测量具有较高的精度,实现了温度测量功能,其主要技术指标达到了系统设计要

2、求。关键词:热电偶 ;温度 ;A/D;单片机 1.热电偶测温原理及系统框图1.1 热电偶测温原理热电偶的基本工作原理是热电动势效应。1823年塞贝克发现,将两种不同的导体(金属或合金)A和B组成一个闭合回路(称为热电偶,见图1-1),若两接触点温度(T,T0)不同,则回路中有一定大小电流,表明回路中有电势产生,该现象称为热电动势效应或塞贝克效应,通常称为热电效应。回路中的电势称为热电势或塞贝克电势,用EAB(T,T0)表示。两种不同的导体A和B称热电极,测量温度时,两个热电极的一个接点置于被测温度场(T)中,称该点为测量端,也叫工作端或热端;另一接点置于某一恒定温度(T0)的地方,称参考端或自

3、由端、冷端。T与T0的温差愈大,热电偶的热电势也愈大,因此,可以用热电势的大小衡量温度的大小。图1-1 热电效应当热电偶两电极的材料不同,且A、B固定后,热电偶的热电势EAB(T,T0)便成为两端温度T和T0的函数,即:EAB(T,T0)= E(T)E(T0) (1-1)也就是说,热电偶的热电势等于热端与冷端温度T和T0所引起的电势差。当T0保持不变,即E(T0)为常数时,则热电势EAB(T,T0)便为热电偶热端温度T的函数EAB(T,T0)= E(T)C=(T) (1-2)由此可知,EAB(T,T0)与T有单值对应关系,这就是热电偶测温的基本公式。1.2系统框图如图1-2所示。此方案采用89

4、C51单片机系统为核心开发热电偶测温系统。I/VAD590K型热电偶 放大 A/D 转换 (TLC 0832) 单片机89C51 显示电路 T0T图1-2 方案二的系统框图系统由四大部分组成:(1)温度测量电路及放大电路;(2)冷端温度补偿电路;(3)A/D转换电路;(4)89C51驱动的LED显示电路。对系统框图的说明如下:热电偶选用的是K型热电偶(镍铬-镍硅热电偶),测温范围选用01200度,利用集成温度传感器AD590进行冷端补偿,放大电路选用自动调零放大电路,A/D转换器选用TLC0832,单片机选用89C51,并扩4个74LS164,连接4个LED数码管。集成温度传感器AD590测量

5、冷端温度T0,其输出电流与绝对温度成正比(1A /K),它相当于一个温度系数为1A /K的高阻恒流源。将输出电流通过电阻及放大器转换成电压信号,送入A/D转换器转换为数字量,存放在内存单元中,完成了对补偿电势的采样。由K型镍铬-镍硅热电偶测量热端温度T,经放大器放大,再由A/D转化器转换成数字信号,单片机将该信号与内存中的补偿电势相加,得到真实的热电势值,并编程实现计算温度值,转换为BCD码,利用单片机驱动四个74LS164及LED数码管,显示被测温度。2.热电偶测温系统硬件电路设计2.1 温度测量及放大电路本系统设计选用K型(镍铬-镍硅)热电偶,此热电偶是目前用量最大的廉价金属热电偶,其用量

6、为其他热电偶的总和。型热电偶的正极为含铬10%的镍铬合金,负极为含硅3%的镍硅合金。可测量01300的介质温度,适宜在氧化性及惰性气体中连续使用,短期使用温度为1200,长期使用温度为1000。其主要特点如下:(1) K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中。广泛为用户所采用。(2) K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛中。当氧分压较低时,镍铬极中的铬将择优氧化,使热电势发生很大变化,但金属气体对其影响较小,因此,多采用金属制保护管。为了实现温度的数字测量

7、和显示,或组成温度的巡检系统,或向计算机过程控制系统提供温度信号,都要对热电偶的热电势进行数字化处理。所以在采用热电偶的温度数字测量系统中,最基本的环节是热电偶和A/D转换器。使用时必须注意:(1)热电偶输出的热电势信号一般都很小(mV数量级),在进行A/D转换之前,必须经过高增益的直流放大。(2)热电偶的热电特性,一般来讲都是非线性的。欲使显示数和输出脉冲数与被测温度直接相对应,必须采用线性化措施进行非线性校正。可采用硬件校正法或软件校正法。在带有计算机或微处理器的测量系统中,非线性校正(和冷端补偿)工作,都直接由计算机完成,即所谓“软件校正法”。所谓“硬件校正法”即采用的是非线性校正装置。

8、由此可见,放大电路的必要性,此系统中温度测量及放大电路如图2-1所示,电路中A1、A2、A3运放组成同相输入并串差动放大器(仪用放大器),放大倍数为 (2-1)其中,适当调整Rp2 ,可使放大倍数Au=100。图2-1 温度测量及放大电路2.2 冷端温度补偿电路根据国际温标规定,热电偶的分度表是以To=0oC作为基准进行分度的,而在实际使用过程中,自由端温度To 往往不能维持在0oC,那么工作温度为T时在分度表中所对应的热电势EAB(T,0)与热电偶实际输出的电势值EAB(T,T0)之间的误差为EAB(T,0)- EAB(T,T0) = EAB(T0,0)。由此可见,差值EAB(T0,0)是自

9、由端温度To 的函数,因此需要对热电偶自由端温度进行处理。而且在工程测温中,冷端温度常随环境温度的变化而变化,将引入测量误差,故对冷端进行处理和补偿十分必要。冷端温度补偿有多种方法,如0恒温法(冰点槽法)、冷端温度修正法及冷端温度自动补偿法、AD590冷端温度补偿法等,该系统设计利用集成温度传感器AD590作为冷端补偿元件。如图2-2所示。AD590的主要特点:(1)线性电流输出:1A/K,正比于绝对温度;(2)测量温度范围宽:-55+150;(3)精度高:激光校准精度到5(AD590M);(4)线性好:满量程范围0.3(AD590M);(5)电压电源范围宽:+4+30V。图中,AD590只需

10、单电源工作,抗干扰能力强,要求的功率很低。AD590输出电流与绝对温度成正比(1A /K),它相当于一个温度系数为1A /K的高阻恒流源。因此在室温25时,其输出电流I=(273+25)=298A,即输出电流为 (2-2)又因为R9=10K,故 (2-3)由于一般电源供应较多器件之后,电源是带杂波的,因此我们使用齐纳二极管作为稳压元件,再利用可变电阻分压,将输出电压U2调整至2.73V 。放大器输出电压Uo为 (2-4)如果现在为摄氏28,则输出电压为2.8V,输出电压(CH0)接A/D转换器的输入通道,那么A/D转换输出的数字量就和摄氏温度成线形比例关系,方便后续的计算与处理。 图2-2 冷

11、端补偿电路2.3 A/D转换电路TLC0832是美国德州仪器公司生产的8位串行模数转换器,有两个可多路选择的输入通道,与单片机或控制器通过三线接口连线,性能比较高。TLC0832芯片具有以下特点:(1)8位分辨率;(2)5V单电源供电,基准电压为5V;(3)输入模拟信号电压范围为05V;(4)输入和输出电平与TTL和COMS兼容;(5)可直接和微处理器接口或独立使用;(6)在串行时钟为250KHz时,转换时间为32s,总非调整误差为1LSB,使用十分方便;(7)有两个可多路选择的模拟输入通道。TLC0832DIP封装的引脚分配图如下图2-3所示:图2-3 TLC0832DIP封装的引脚分配图各

12、引脚说明如下:为片选端,低电平有效;CH0,CH1为模拟信号输入端;DI为多路器地址选择输入端;DO为模数转换结果串行输出端;CLK为串行时钟输入端;GND为电源地;VCC/REF为正电源端和基准电压输入端。当为低电平时,启动A/D转换,在整个转换过程中必须始终为低电平,连续输入10个脉冲完成一次转换,数据从第2个时钟开始输出。转换结束后应将置为高电平,当重新拉低时将开始新的一次转换。TLC0832通过串行接口与CPU相连来传送控制命令,可用软件对通道和输入端进行选择和配置。转换开始后,器件从CPU接收时钟,在一个时钟的时间间隔前导下,以保证输入多路器稳定。在转换过程中,转换的数据同时从DO端

13、输出,并以最高位(MSB)开头。在经过8个时钟后,转换完成,当变高时,内部所有寄存器清零,此时,输出电路变为高阻态。DI和DO端可以连在一起,通过一根线连到处理器的一个双向I/O口进行控制。TLC0832的地址是通过DI端移入来选择模拟输入通道,同时也决定输入是单端还是差分输入。在本设计中,TLC0832的连接电路如图2-4所示,P1.2连接端,由P1.1提供串行时钟,DO和DI由P1.0控制,CH0为与AD590测得的温度成比例的电压信号,CH1为与热电偶测得的电势成比例的电压信号。/CS1CH02CH13GND4DI5DO6CLK7VCC/REF8U9TLC0832CH0CH1+5VGND

14、P1.2P1.1P1.0图2-4 TLC0832部分电路2.4.1单片机选择及部分功能简介MCU是整个系统的控制核心,由于温度测量系统的接口方便,综合考虑整个系统,选用美国ATMEL公司生产的AT89C51型单片机。AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,其外观引脚图如下:图2-5AT89C51外观

15、引脚图AT89C51提供以下标准功能:4k字节的flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0hz的静态逻辑操作,并支持两种软件可选的节电工作模式、空闲方式停止CPU工作,但允许RAM,定时/技术器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其他所有部件工作指导下一个硬件复位。AT89C51共有4个双向的8位并行I/O端口,分别为P0P3,共有32根口线,端口的每一位均由锁存器、输出驱动器和输入缓冲器所组成。P0P3的端口

16、寄存器属于特殊功能寄存器系列。这四个端口除了可以按字节寻址外还可以位寻址。其中P0口为漏极开路作为输出使用时应外加上拉电阻,P3口既可以做为普通I/O口使用,还可以作为特定的功能引脚。虽然51单片机只有一个串口接口,但其I/O口既可以用字节寻址也可以位寻址,这样在实际应用中,我们就可以通过模拟不同总线的时序特征来实现各种数据的传输。AT89C51单片机内部有一个功能强大的全双工的一部通信串口。其串行口有四种工作方式:分别为同步通信方式、8位异步收发、9位异步收发(特定波特率)、9位异步收发(定时器控制波特率)。它有两个物理上独立接收发送缓冲器SBUF,可同时发送、接收数据。波特率可由软件设置片

17、内的定时器来控制,而且每当串行口接收或发送1B完毕,均可发出中断请求。2.4.2AT89C51单片机的SPI实现对于不带SPI串行总线接口的AT89C51单片机来说,可以使用软件来模拟SPI的操作,包括串行时钟、数据输入和数据输出。对于不同的串行接口外围芯片,它们的时钟时序是不同的。对于在SCK的上升沿输入(接收)数据和在下降沿输出(发送)数据的器件,一般应将其串行时钟输出口P1.1(模拟MCU的SCK线)的初始状态设置为1,而在允许接口后再置P1.1为0。这样,MCU在输出1位SCK时钟的同时,将使接口芯片串行左移,从而输出1位数据至MCU的P1.3口(模拟MCU的MISO线),此后再置P1

18、.1为1,使单片机从P1.0(模拟MCU的MOSI线)输出1位数据(先为高位)至串行接口芯片。至此,模拟1位数据输入输出便宣告完成。此后再置P1.1为0,模拟下1位数据的输入输出,依此循环8次,即可完成1次通过SPI总线传输8位数据的操作。对于在SCK的下降沿输入数据和上升沿输出数据的器件,则应取串行时钟输出的初始状态为0,即在接口芯片允许时,先置P1.1为1,以便外围接口芯片输出1位数据(MCU接收1位数据),之后再置时钟为0,使外围接口芯片接收1位据(MCU发送1位数据),从而完成1位数据的传送。2.5 单片机控制的显示电路本设计使用的是一个四位共阳数码管,采用动态显示方式。当89C51单

19、片机的P0口总线负载达到或超过P0最大负载能力时,必须接74LS245等总线驱动器。其电路如图3-16所示。其中74LS245的片选跟三态控制引脚接地,数据由单片机向数码管传输。数码管的位的选择通过8550三级管进行控制,三级管基极通过限流电阻跟单片机的I/O口相连接,当端口为高电平时,三极管截止,当给端口为低电平时三极管导通,数码管相应的位被选中。这样可方便地对数码管每一位进行单独控制。R3-R10为限流电阻取值170500现取240。为保证三极管可靠开通关断,且要求数码管的亮度适量较高,基极电阻 R11-R14 可适量取小值,本设计取基极电阻为470。图2-6数码管显示电路74LS245是

20、我们常用的芯片,用来驱动led或者其他的设备,它是8路同相三态双向总线收发器,可双向传输数据。其引脚图如下:图2-7 74LS245引脚功能图74LS245还具有双向三态功能,既可以输出,也可以输入数据。当89C51单片机的P0口总线负载达到或超过P0最大负载能力时,必须接入74LS245等总线驱动器。当片选端E低电平有效时,DIR=“0”,信号由 B 向 A 传输;(接收)DIR=“1”,信号由 A 向 B 传输;(发送)当E为高电平时,A、B均为高阻态。由于P2口始终输出地址的高8位,接口时74LS245的三态控制端1G和2G接地,P2口与驱动器输入线对应相连。P0口与74LS245输入端

21、相连,E端接地,保证数据线畅通。89C51的/RD和/PSEN相与后接DIR,使得RD且PSEN有效时,74LS245输入(P0.1D1),其它时间处于输出(P0.1D1)。3. 热电偶测量温度系统软件设计3.1 软件总体流程设计软件设计采用单片机的C语言或汇编语言编程,运用模块化程序设计思想,对不同功能模块的程序进行分别编程,以便移植或调用,这样使软件层次结构清晰,有利于软件的调试修改。3.2 系统软件实现原理按照本系统的测温需要,需要得到热电偶测得的热电势和AD590测得的冷端温度进行计算以得到热电偶热端温度。AD590测得的冷端温度转换为与温度成正比的电压信号,并进行A/D转换,得到的数

22、字信号,送入单片机,由单片机计算其温度,并查K型热电偶的分度表,得到冷端温度对应的热电势(EAB(T0,0)),即补偿电势,存入内存中。热电偶测得的热电势通过放大电路进行放大,进入A/D转换器变为数字信号,采样结果通过P1.0引脚送入单片机内部,由单片机计算出原始的热电势(EAB(T,T0)),并与内存中的补偿电势相加,即得到真实的热电势值(EAB(T,0)),查K型热电偶的分度表,得到被测温度值,转换为BCD码,并通过串口将数据发送出去,驱动数码管显示正确温度值。3.3 系统程序构建热电偶测温系统软件部分采用模块化设计思想,将系统分为主程序、初始化处理模块、A/D转换模块、温度处理模块、显示模块,其软件系统的主程序实现流程如图3-1所示。图3-1

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922