1、小型垂直轴风力发电系统设计摘要 本文介绍了一种小型垂直轴风力发电系统的设计方案,本系统主要面向沿海高层建筑或边远地区用户。经过查阅大量文献资料结合必要的理论计算,系统采用四片NACA0012型叶片构成H型达里厄风力机,利用永磁直驱同步发电机将机械能转化为电能,经过电力电子电路对蓄电池进行充电。文中对主要支撑件和传动件进行了必要的结构校核,对所用的两个角接触球轴承进行了使用寿命校核。最后以垂直轴风轮和永磁直驱发电机为主要对象,用solidworks软件建立三维模型,设计风力发电系统主要零部件,并简要介绍其控制电路、选择蓄电池型号。关键字 垂直轴 风力发电机 达里厄 NACA0012翼型Desig
2、n of the Vertical Axis Wind TurbineAbstract This is a design of a kind of vertical axis wind turbine which was used in removed rural area or highrise in seaside city based on related theories. By consulting reference sources and necessary mathematical operation,four NACA0012 air-foil blades were use
3、d as the compoments of the H-type Darrieus. The lead-acid bettery was charged by the electrical energy which was generated by a permanent magnet synchronous motor with the operation of power electronic circuits. In this article,some constructures such as the main suppoting parts and the angular cont
4、act ball bearings were vertified on the intensity and life. By using of the solidworks2006 software,every important part has a 3D model. We also design a control circuit and bettery breifly.Keywords Vertical axis Wind turbine Darrieus NACA0012 air-foil目录第一章 绪论11.1 国内外风力发电的发展现状及其趋势11.2 小型垂直轴风力发电机发展概况
5、3第二章 风力发电基本原理42.1 风特性42.1.1 风能量42.1.2 湍流特性52.2 风力发电系统结构框架5第三章 小型垂直轴风力发电的总体设计63.1 风力机的种类及选择63.2 垂直轴风力机空气动力学83.2.1 风能利用率93.2.2 Cp-功率特性曲线103.2.3 贝茨极限103.2.4 叶尖速比113.2.5 风力机的功率及扭矩计算113.3 叶片选型123.3.1 叶片实度133.3.2 叶片形状及材料14第四章 电气设备及传动设计164.1 基本原理164.1.1 法拉第电磁感应原理164.1.2 相位角及功率因数164.2 转化装置174.2.1 直驱式永磁同步发电机
6、174.2.2 电气系统电路设计174.3 传动系统结构设计及计算184.3.1 传动轴的设计184.3.2 轴承的计算及选型20第五章 刹车装置及其他部件设计255.1 刹车装置255.1.1 刹车装置原理255.1.2 刹车结构受力计算275.2 塔架的设计285.2.1 支撑件受力分析285.2.2 拉索的受力计算305.3 蓄电池和选型315.3.1 蓄电池的种类及工作基本原理315.3.2 蓄电池选型325.4 箱体的设计325.4.1 箱体的外形设计325.4.2 箱体的防锈与密封33结论34致谢语35参考文献36附录37小型垂直轴风力发电系统设计小型垂直轴风力发电系统设计2小型垂
7、直轴风力发电系统设计引言当前火力发电仍然是主要的发电方式,其高污染高能耗正一步步吞噬着地球脆弱的生态环境,地球急需一种环保高效的可再生能源来替代火力发电。风力发电不像火力发电那样需要大量的煤炭、水力发电那样需要建造巨大的水库,也不像核电那样需要消耗铀,它不需要燃料就可以源源不断地产生能源,建好之后除了日常的维护费用外几乎不需要其他费用支持。风力发电的用法很多,既可以并网使用也可以离网使用,可以同太阳能一起使用,也可以单独构成大型风力发电厂。风力机的种类千奇百怪,设计思路五花八门,充分发挥了人类丰富的想象力和创造力,按轴的方向分有水平轴风力机、垂直轴风力机,按驱动方式分有升力型和阻力型等等。虽然
8、目前世界各地的大部分风场所用的风力机为水平轴的,但由于垂直轴风力机,尤其提到达里厄型风力机,有着优越的空气动力性能,提高了效率,并且很大程度降低了造价,所以近年来广泛受到各国研究人员的关注。垂直轴风力机的旋转半径可以小至一两米,也可以大到数十米,发电风速范围比较广。37第一章 绪论1.1 国内外风力发电的发展现状及其趋势随着能源紧缺及化石燃料对环境污染日趋严重,开发新型能源成为各国经济发展的关键,目前可再生能源有太阳能、风能、地热能等。风能发电是目前为止技术最为成熟,历史最为悠久的发电方式,是具有大规模发展潜力的可再生能源,有可能成为重要的替代能源。自13世纪起,水平轴风车产业就成为了农村经济
9、结构的主要部分,而利用风力发电的历史可以追溯到19世纪晚期,美国的Brush研制了第一台12kW的直流风力机。Golding(1955)、Shepherd和Divone(1994)记录了早期的风力机发展史。1931年,苏联制造了一台100KW、直径30m的Balaclava(巴拉克拉法帽)风力机;19世纪50年代早期,英国制造了一台100KW、直径24m的Andrea Enfield(安德鲁-恩菲)风力机。1956年,丹麦建造了一台200KW、直径24m的Gedser(盖瑟)风力机,1963年法国电力工业试验了一台功率1.1MW、直径35m的风力机。在德国,Hutter(胡特)于19世纪50年
10、代和60年代建立了一些新型的风力机。由于石油价格突然上涨,美国开始建造一系列示范风力机组,如1975年的功率100KW、直径38m的Mod-0风力发电机组和1987年的功率2.5MW、直径97.5m的Mod-5B风力发电机组。目前世界上最大的风力发电机是德国制造的E-126,高达120m,风轮直径126m,每个叶片长达61.4m,每片重18t,装机功率达到5MW1,如图1-1所示。 图1-1 Enercon的E-126型风力发电机我国风能资源丰富,根据第三次风能普查结果,我国技术可开发的陆地面积约为24104km2。考虑到风电场中风力发电机组的实际布置能力,按照5MW/km2计算,陆上技术可开
11、发量为120104MW。目前我国风能资源开发利用的重点区域有内蒙古自治区、辽宁省、河北省、吉林省、甘肃省、新疆维吾尔自治区、江苏省等,其中内蒙古自治区技术可开发量约为50104MW,居全国之首2如图1-2所示。 图1-2 全年平均风能密度分布在国家可再生能源发展规划和风电装备国产化等相关政策的支持下,我过风电产业得到了快速发展,2009年中国(不含台湾省)新增风电装机10129台,容量13803.2MW,年同比增长124%;累计风电装机21581台,容量25805.3MW,年同比增长114%。台湾省当年新增风电装机37台,容量77.9MW;累计装机227台,容量436.05MW3,如图1-3所
12、示。图1-3历年我国装机储量1.2 小型垂直轴风力发电机发展概况垂直轴风力机(Vertical Axis Wind Turbine或VAWT)的风轮轴与风向垂直,风轮的转动与风向无关,但是由于其启动风速较高且功率不稳定,其发展并不像水平轴风力机那么迅速。随着计算科学的飞速发展,垂直轴风力机的优异空气动力性能(尤其是达里厄风力机)渐渐为世人所认识,近年来广泛受到各国研究人员的关注。国外较大的风力发电公司有加拿大的Cleanfiled Energy公司,其主导产品是一种额定功率为3.5kW的升力型叶轮风力发电机,整套系统由玻璃钢纤维和钢材组成,约重181.4kg,叶轮高3m,轮辐直径2.5m。20
13、06年,中国垂直风力发电机实验基地在内蒙古化德县启动运行,目前50kW小样机组已投入运行开始发电,如图1-4所示。2007年,西峡瑞发水电设备公司和哈尔滨发电设备研究中心联合开发设计的1.5MW垂直轴永磁风力发电机研制成功,并在张家口风电场安装运行。图1-4 德化县50kW垂直轴风力机第二章 风力发电基本原理2.1 风特性2.1.1 风能量空气的流动现象称为风,风是由于不同地方的空气受热不均匀,从一个地方向另一个地方运动的空气分子产生的,风的能量就是空气分子的动能,如图2-1所示。图2-1 空气流的动能风功率计算公式为联立以上各式得 (2.1)从式(2.1)容易看出风速对风能的影响是最大的,因
14、此在沿海地区设计风力机时必须要考虑强台风对设备的影响。2.1.2 湍流特性湍流指的是短时间内的风速波动,随着海拔、气候、地形等变化。影响湍流的因素很多,产生湍流的主要原因有:1.由地形差异引起的气流与地表的摩擦。2.由于空气密度差异和气温变化的热效应空气垂直运动。湍流往往是有这两种原因相互作用形成的。湍流无法用简单的数学公式完整的表达出来,其复杂程度超出了人类现有的认识能力。虽然它的活动遵循一定的定律,但是人类想要用这些定律来描述湍流过程是相当困难的,因此只能通过统计学来大致描述湍流。湍流风速变化基本上服从高斯函数,风速变动相对于风速均值服从正态分布,湍流强度I是用来描述湍流总体水平的,计算公
15、式如下4: (2.2)式中I为湍流强度;为脉动风速的均方根;为脉动风速动能;为10min平均风速。湍流强度由地表的粗糙度和高度决定,通常是在很短的一段时间内计算得到的,如几分钟到一小时。 2.2 风力发电系统结构框架小型垂直轴风力发电机不需要并网,只要选择合适的蓄电池就能够提供一般家庭的生活用电,本次设计的发电系统主要由以下几部分构成:叶轮、发电机、传动机构(包括刹车)、塔架、整流、功率控制系统,如图2-2所示。图2-2系统结构图第三章 小型垂直轴风力发电的总体设计3.1 风力机的种类及选择风力机的分类方法很多,其中按风力机主轴布置方向可分为水平轴风力机和垂直轴风力机,水平轴风力机的旋转主轴与
16、风向平行,如图3-1所示。水平轴风力机组有两个主要优势:1.实度较低,能量成本低;2.叶轮扫掠面的平均高度可以更高,有利于增加发电量。图3-1 水平轴风力发电机垂直轴风力机的旋转主轴与风向垂直,如图3-2所示,垂直轴风力机设计简单,风轮无需对风,其优点有:1.可以接受任何风向的风,无需对风;2.齿轮箱和发电机可以安装在地面,检修维护方便。图3-2 垂直轴风力发电机按照桨叶受力方式分类可分为升力型风力机和阻力型风力机。升力型风力机利用叶片的升力带动旋转轴转动,从而转化风能为电能,这种风力机目前较为常见,大部分水平轴风力机都属于升力型风力机。目前大中型风电主要采用水平轴风力机,属升力型风力机,具有
17、转速高、风的利用率较高等优点,其叶尖速比通常在4以上,最大功率系数可达50%,如图3-3所示。阻力型风力机利用叶片上受到的阻力来驱动发电机发电,大部分阻力型风力机为垂直轴,目前较少,如图3-4所示。图3-3 升力型风力发电机图3-4 阻力型风力发电机垂直轴升力型风力机既有垂直轴风力机结构简单、维修方便等优点,又和升力型风力机一样具有较高转速,风能利用率有所提高。由于运行过程中受力比水平轴好得多,疲劳寿命要更长。3.2 垂直轴风力机空气动力学如图3-5所示建立平面坐标系,假定风速矢量为v,叶片端线速度矢量为u,叶片所在位置夹角为,则叶片的平均线速度为5 (3.1)在图3-5中,风速矢量v=(0,
18、-V),叶片速度矢量u=(-Usin,Ucos),风对叶片的相对速度w=v+u,坐标运算后得w=(-Usin,-V+Ucos)。图3-5 垂直风力机动力原理相对风速的大小就是矢量w的模|w|,以表示w的单位矢量,表示u的单位矢量,则可以求出此时的攻角,攻角就是相对风速与叶片弦长所在直线的夹角,按照矢量计算可推得: (3.2)在风力的作用下,叶片在攻角时受到的升力和阻力可以按以下公式计算: (3.3) (3.4)将升力和阻力投影到风轮切方向: (3.5) (3.6)其中Flt为Fl在切向的分量;Fdt为Fd在切向的分量。叶片受力分解如图3-6所示6。图3-6 垂直风力机的叶素力学模型切向力的合力
19、产生转矩使风轮转动,叶片在位置角为时产生的转矩为 (3.7) 3.2.1 风能利用率风能利用系数Cp是表示风力机效率的重要参数,由于风通过风轮的风能不能完全转化为风轮机械能,其风能利用率Cp为7 (3.8)其中Pm为风力机输出的机械功率;Pw为风力机输入的风能。目前大型水平轴风力发电机的风能利用率绝大部分是由叶片设计方计算得到的,一般在40%以上。由于之前一般都是利用叶素理论来计算垂直轴风力机的风能利用率,得出的结果不如水平轴,但是根据国外最新的实验表明垂直轴的风能利用率不低于40%8,再加上水平轴风力机受到风向变化的影响,而垂直轴风力机可以在任何风速角下工作,因此有理由相信垂直轴风力机的利用
20、率能够超过水平轴。3.2.2 Cp-功率特性曲线风能利用系数Cp一般是变化的,它随着风速与风轮转速变化而变化,叶片尖端线速度与风速之比叫做叶尖速比(将在第3.2.4节具体说明),为了得到最佳的风能利用率,一般根据Cp-曲线来选择合适的叶尖速比,如图3-7所示。图3-7 Cp-曲线图从图3-7中看出,当叶尖速比达到7.5左右时风能利用系数最大,风能利用率最高,Cp值有一个最大值,实际风力机一般都达不到这么高的风能利用率,所以我们先初定叶尖速比在=6,风能利用率Cp=0.4时对风力机进行设计,具体的Cp-图还需根据具体的风力机叶片试验及攻角调整来确定。3.2.3 贝茨极限风能利用系数缩短能达到的最
21、大值就是贝茨极限,德国空气动力学家Albert Betz提出贝茨极限后,直到今天还没有人能设计出超过这个极限的风力机,该极限不是由于设计不足造成的,而是因为流管不得不在致动盘上游膨胀,使得自由流速比在圆盘处小,贝茨极限由一下微分方程得出9: (3.9)式中a为气流诱导因子。解微分方程可知当a=1/3时,Cp最大,求得最大Cp=0.953。3.2.4 叶尖速比风轮叶片尖端线速度与风速之比称为叶尖速比,阻力型风力机叶尖速比一般为0.3至0.6,升力型风力机叶尖速比一般为3至8。在升力型风力机中,叶尖速比直接反映了相对风速与叶片运动方向的夹角,即直接关系到叶片的攻角,是分析风力机性能的重要参数。叶尖
22、速比计算公式为 (3.10)3.2.5 风力机的功率及扭矩计算由福建省情资料库中的图像资料可以看出厦门地区地面平均风速在4m/s6m/s左右,如图3-8所示。图3-8福建省风速分布从福建气象网站(图3-9 厦门某日24小时风速监测图风力机的额定风速按照国家标准GBT 13981-2009 小型风力机设计通用要求:风轮扫掠面积小于等于40m2的风力机额定风速Vn在6m/s10m/s,我们将风力机的风速暂定为8m/s。风力机设计发电功率为300W,现在我们来计算通过该风力机的总功率,按风力机效率Cp=40%,则风力机的输入功率为 (3.11)根据公式(2.1)得扫风面积为 (3.12)式中 P为风
23、力机实际获得总功率,W;为空气密度,kg/m3;取标准值1.25 kg/m3;S为风轮的扫风面积,m2;v为上游风速,m/s。以上结果表明:通过风功率为750W的风力机组,扫掠面积为2.34 m2,在风速为8m/s的情况下发电功率为300W。风轮高度与直径的比值为风轮的高径比,应该在输出相同功率时叶片制造费用最低的条件下,选择高径比,研究表明,高径比为1附近时相同的材料扫风面积最大,其中H为风轮高度,D为风轮直径。由得到H=1.5m,D=1.6m,产生的扫掠面积基本上能符合要求。风力机转矩10: (3.13)3.3 叶片选型叶片是利用气流通过时产生的压力差使叶轮转动的部件,具有空气动力学特性,
24、其设计质量对整个风力发电系统及其他零部件有这直接影响,因此叶片是风力机的重要部件。叶片的设计目标主要有:1. 良好的空气动力外形;2. 可靠地结构强度;3. 合理的叶片刚度;4. 良好的结构动力学特性和启动稳定性;5. 耐腐蚀、方便维修;6. 满足以上目标前提下,尽可能减轻叶片重量,降低成本。风力机的翼型多种多样,各有各的优缺点,应用较多的有NACA翼型系列、SERI翼型系列、NREL翼型系列、RIS翼型系列和FFA-W翼型系列等,其中NACA翼型是美国国家宇航局(NASA)的前身国家航空咨询委员会(NACA)提出设计的翼型系列,具有低阻力系数的特点,适合低速运行11。3.3.1 叶片实度风力
25、机叶片的总面积与风通过风轮的面积(风轮扫掠面积)之比称为实度比(容积比),是风力机的一个参考数据。垂直轴风力机的叶片实度计算公式为: (3.12)升力型垂直轴风力机叶轮,C为叶片弦长,N为叶片个数,R为风轮半径,L为叶片长度,为实度比。合理选取实度比的原则是在保证风轮气动特性的条件下,力求使制造叶片的费用最低。为了最大限度提高动效率,翼型特性应具有下列要求: 1. 升力系数斜度大;2. 阻力系数小;3. 阻力系数与零升角对称。如图3-10所示三种翼型的阻力系数,可以看出,NACA0012的阻力系数较小,适用于大雷诺数的情况,具有上述特性,故选用较低阻力系数NACA0012对称翼型。图3-10几
26、种翼型的翼型特性由于NACA0012是对称翼型,在图3-11左侧数据表中仅列出了单边的数据,表中c是弦长(弦长为1.00);x是弦长坐标(单位是x/c);y是对应x位置的翼面与弦的距离(单位是y/c)。图3-11 NACA0012翼型参数实度比选择在0.50.6范围内较好。为此可以得出风轮叶片的弦长: (3.13)本次设计采用的叶片弦长0.24m,数据只需将表中各数字适当缩放即可5。3.3.2 叶片形状及材料叶片截面结构为主梁蒙皮式,表面材料为铝合金,主梁采用单向承载能力强的硬铝材料,O型主梁结构制造简单,各向受力均衡。叶片空心处用聚氨酯泡沫材料填充,剖面形式如图3-12所示。图3-12 叶片
27、剖面主梁可直接焊接与铝合金蒙皮上,待主梁与蒙皮连接完成后,在空腹结构内填入聚氨酯直接发泡填充成型。由此,风力机的基本参数可以确定,如表3.1所示。表3.1 风力机参数额定风速平均效率叶尖速比设计功率8m/s40%6300W第四章 电气设备及传动设计4.1 基本原理4.1.1 法拉第电磁感应原理磁通量的变化将产生感应电动势,闭合电路的一部分导线切割磁感线将产生感应电流,这种现象叫做电磁感应,1820年H.C.奥斯特发现电流磁效应,之后许多科学家试图解释这一现象,1831年8月,法拉第认为感应电流是由与导体性质无关的感应电动势产生的,即使没有回路没有感应电流,感应电动势依然存在。法拉第电磁感应定律
28、可用以下公式表示: (4.1)其中:e为感应电动势,N为线圈匝数,为磁通量变化量。导线切割磁感线产生的感应电动势可用以下公式表示: (4.2)其中B为磁感应强度,L为导线长度,v为导线切割速度。4.1.2 相位角及功率因数瞬时电压及瞬时电流由以下公式得到: (4.3) (4.4)其中Um为电压最大值,Im为电流最大值,是瞬时电压与瞬时电流的夹角。瞬时功率为: (4.5)在一个周期内对瞬时功率积分获得平均功率: (4.6)对于三相电流,每相电流等于的线圈电流,实际产生的功率为: (4.7)式中即为功率因数。4.2 转化装置4.2.1 直驱式永磁同步发电机永磁同步发电机适合离网型风力发电系统采用,
29、由于发电机转子直接由风轮驱动,因此不需要安装升速齿轮箱,这样避免了齿轮箱产生的损耗、噪声以及材料的磨损等问题。目前普遍使用的永磁同步发电机主要有FD系列和YF系列,按照功率和转速选择发电机,经过查阅中国电器工程大典第九卷-电机工程P617表5.5-2 ,现选择发电机型号为FD-300,其基本参数如表4.1所示。表4.1发电机参数型号额定功率/W发电机额定电压/V重量/kg启动力矩/Nm额定电流/A发电机额定转速FD-30030028170.3510.7400r/min4.2.2 电气系统电路设计由于本人对电力控制方面不是很了解,因此只能对现有前人的论文进行一些改动12。功率控制部分设计限于知识
30、水平本人无法所有完成,只能大概叙述基本工作原理,如图4-1所示。图4-1 系统电力控制图永磁直驱同步发电机转子输出三相交流电经过不控整流电路整流后对蓄电池进行充电,电子调压电路的功能除了对蓄电池充电的控制外,还负责多余电能的卸荷。12V蓄电池接boost电路进行升压,升压后电压为24V,整个系统对外供电电压也为24V。光电编码器的额定电压是5V,因此在电路中加入R1与R2进行分压限流。4.3 传动系统结构设计及计算4.3.1 传动轴的设计主传动轴只承受扭矩,不受弯矩,按空心主轴扭转强度估算主轴最小直径: (4.8)其中A为系数,按机械设计手册单行本-轴承及其连接表5-1-19选取;d为轴端直径
31、,mm;n为轴的工作转速,r/min;P为轴传递的功率,kW;为空心轴的内径d1与外径d的比值,=d1/d。查阅机械设计手册单行本-轴承及其连接表5-1-19得45钢的A值取110,已知功率为750W,主轴额定转速n为400转/min。代入式(4.8)后得到 (4.9)按照主轴扭转刚度计算直径: (4.10)其中B为系数,按机械设计手册单行本-轴承及其连接表5-1-20选取,查阅机械设计手册单行-本轴承及其连接表5-1-20得一般传动时B值取91.5,已知功率为0.75kW,主轴额定转速n为400转/min,代入式(4.10)后得到 (4.11)如果截面上有键槽时,应将求得的轴径增大,其增大值
32、见机械设计手册单行本轴-承及其连接表5-1-22,增大值应选7%,最后得出的最小外径d=21.1mm。为了安全,我们选择的轴外径为d=30mm,内径d1=18mm,采用45钢调质处理,主轴如图4-2所示。图4-2 主轴示意图校核主轴安全系数,主轴转矩为 (4.12)只考虑扭拒作用时的安全系数为 (4.13)其中为对称循环应力下的材料扭转疲劳极限,Mpa,见机械设计手册单行本轴-承及其连接表5-1-1,;为扭转时的有效应力集中系数,见机械设计手册单行本轴-承及其连接表5-1-30表5-1-32,;为表面质量系数,一般用机械设计手册单行本轴-承及其连接表5-1-36;轴表面强化处理后用机械设计手册
33、单行本轴-承及其连接表5-1-38;有腐蚀情况时用机械设计手册单行本轴-承及其连接表5-1-35或机械设计手册单行本轴-承及其连接表5-1-37,;为扭转时的尺寸影响系数,见机械设计手册单行本轴-承及其连接表5-1-34,;、为扭转应力的应力幅和平均应力,Mpa见机械设计手册单行本轴-承及其连接表5-1-25,;为材料扭转的平均盈利折算系数,见机械设计手册单行本轴-承及其连接表5-1-33,。将各数据代入公式后得根据调质45钢,要求查机械设计手册(机工版)第2版第19篇第5章得安全系数为5.0,因此设计的主轴满足要求。4.3.2 轴承的计算及选型由于风力机不仅承受风轮的扭矩,而且要承受气流方向
34、的一定弯矩,角接触球轴承不仅能够承径向力,同时能够承受一定的径向载荷,因此在主轴上安装两个角接触球轴承。1角接触球轴承1的选用计算角接触球轴承1的安装位置如图4-3所示。角接触球轴承图4-3 轴承1的安装位置轴径d=30mm,额定转矩T=4.3Nm。由机械设计手册单行本-轴承表6-2-82选择角接触球轴承36000型新代号7000C,之所以选用接触球轴承是考虑到主轴在转动时有可能产生径向载荷,轴承1参数如表4.2所示。孔径d外径D轴承代号极限转速r/min(脂润滑)额定动负荷额定静负荷重量30mm55mm7006C950011.65kN8.49kN0.11kg表4.2 轴承1参数轴向载荷:径向
35、载荷按照最不利状况计算,根据伯努利方程,气流作用在叶片上的压力为: (4.14)作用在4个叶片上的总力为 (4.15)由机械设计手册单行本-轴承表6-2-12推荐使用寿命为100000小时, 轴承当量动载荷的计算公式为 (4.16)式中X、Y分别为径向动载荷系数及轴向动载荷系数。可通过查机械设计手册表283-2得:因为所以应该选择X=0.44,Y=1.47,代入式子得到轴承基本额定动载荷按如下公式计算:式中:为基本额定动载荷计算值,N;为速度因数,按机械设计手册单行本-轴承表6-2-9选取5.85;为力矩载荷因数,力矩载荷较小时取1.5,较大时取2,这里选取2;为冲击载荷因数,按机械设计手册单
36、行本-轴承表6-2-10选取1.2;为温度因数,按机械设计手册单行本-轴承表6-2-11选取1;为寿命因数,按机械设计手册单行本-轴承表6-2-8选取0.405;为当量动载荷。将各个数据代入式(4.13)得:故选用此轴承能够满足额定载荷的要求。2角接触球轴承2的选用计算角接触球轴承2的安装位置如图4-4所示。轴承图4-4 轴承2安装位置按照机械设计手册单行本-轴承表6-2-82选择轴承型号36105(新型号7005C),参数如表4.3所示。孔径d外径D轴承代号极限转速r/min(脂润滑)额定动负荷额定静负荷重量25mm47mm7006C120009.38kN7.73kN0.074kg表4.3
37、轴承2参数按照轴承1校核公式(4.15)对轴承进行校核:轴承当量动载荷按公式(4.16)得:式中X、Y分别为径向动载荷系数及轴向动载荷系数。可通过查机械设计手册表283-2得:因为所以应该选择X=0.44,Y=1.40,代入公式(4.16)得到由机械设计基础(第五版)公式16-3计算轴承寿命: (4.17)式中:为温度因数,按机械设计手册单行本-轴承表6-2-11选取1;为冲击载荷因数,按机械设计手册单行本-轴承表6-2-10选取1.2;C为额定动载荷,C=9.38kN;N为主轴额定转速,n=400r/min;为寿命指数,对于球轴承取3。将各数据代入式子后得由机械设计手册单行本-轴承表6-2-
38、12推荐使用寿命为100000小时,所以可以满足使用要求。主轴与发电机之间用圆锥销套筒联轴器进行连接,如图4-5所示,联轴器具体参数见图纸。图4-5 圆锥销套筒联轴器第五章 刹车装置及其他部件设计5.1 刹车装置5.1.1 刹车装置原理目前应用的制动器有外抱块式制动器(简称:块式制动器)、内张蹄式制动器(简称:蹄式制动器)、带式制动器、盘式制动器、载荷自制制动器等等,它们的工作原理都是利用摩擦力使致动盘停止,从而起到制动作用。制动器目前已经形成标准,是标准件。东莞市产华电机有限公司FDB-1-100型凸缘单板式电磁制动器是利用电磁力产生压力作用于制动盘上,在制动盘表面形成摩擦力,其基本结构如图5-1所示。图5-1制动器受力要求在十二级风速(约30m/s)时能够有效制动,下面通过计算力矩来选择制动器已知由公式(4.12)得制动器所选型号为FDB-1-100,其基本参数如表5.1所示。表5.1 制动器参数型号制动盘直径/mm静摩擦转矩N/m动摩擦转矩/Nm功率 24VDC(W)at20重量kgFDB-1-1001
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。
Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1
陕公网安备 61072602000132号 违法和不良信息举报:0916-4228922