1、行列式的计算方法 行列式的计算是高等代数中的难点、重点,特别是高阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握 计算高阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。方法方法1 1 定义法定义法利用利用n n阶行列式的定义计算行列式阶行列式的定义计算行列式,此法适用于此法适用于0 0比较多的行列式。比较多的行列式。例例1 1 求下列行列式的值求下列行列式的值解解 利用利用n n阶行列式的定义阶行列式的定义,可直接计算其值可直接计算其值!方法方法2 2化三角形法化三角形法 化三角形法是将原行列式化为上(下)三角形行列式或对化三角形法是将原行列式化为上(下)三角
2、形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法之角形行列式计算的一种方法。这是计算行列式的基本方法之一。一。例例2 2 计算行列式计算行列式解解 首先给第首先给第1 1行分别乘行分别乘-7,-5,-3,-7,-5,-3,分别加到第分别加到第2,3,42,3,4行上行上,再交换第再交换第2,32,3两行的位置两行的位置;给第二行分别乘以给第二行分别乘以2,-32,-3后后,分别分别加到第加到第3,43,4行上行上;最后给第最后给第3 3行乘行乘1 1加到第加到第4 4行即可。行即可。方法方法3 3拆行(列)法拆行(列)法 由行列式拆项性质,将已知行列式拆成若干个行列式之和,计算其
3、值,再由行列式拆项性质,将已知行列式拆成若干个行列式之和,计算其值,再得原行列式值,此法称为得原行列式值,此法称为拆行(列)法拆行(列)法。例例3 3 求解行列式求解行列式解解 按第一列拆开按第一列拆开,再提公因子得再提公因子得D=再把第个行列式按第列展开,第个行列式按第列展开最终得再把第个行列式按第列展开,第个行列式按第列展开最终得方法方法4 4降阶法降阶法 利用行列式按行按列展开定理将高阶行列式转化为较低阶行列式求解的方法叫做降阶法降阶法.它可以分为直接降阶法和递推降阶法直接降阶法直接降阶法用于只需经少量几次降阶就可求得行列式值的情况。递推降阶法递推降阶法用于需经多次降阶才能求解,并且较低
4、阶行列式与原行列式有相同结构的情况。例例4 4 求解下列行列式:求解下列行列式:(1)解解 利用按行按列展开定理把原行列式按第利用按行按列展开定理把原行列式按第1 1列展开列展开降阶后的两个低阶行列式都是三角形行列式降阶后的两个低阶行列式都是三角形行列式,故原行列式的值为故原行列式的值为(2)解 把原行列式按第1列展开得降阶后的行列式,第1个行列式与原行列式的结构相同,此行列式用n-1表示,而后一个行列式是三角形行列式,则上式可表示为将 代入 中得把 Dn-1 按同样的方法展开得依次下去,得把 代入 中得而 方法方法5 5升阶法(加边法)升阶法(加边法)有时为了计算行列式,特意把原行列式加上一
5、行一列再进行计算,这有时为了计算行列式,特意把原行列式加上一行一列再进行计算,这种计算行列式的方法称为种计算行列式的方法称为加边法加边法或或升阶法升阶法。加边法加边法最大的特点最大的特点就是要找每行或每列相同的因子就是要找每行或每列相同的因子,那么升阶之后那么升阶之后,就可利用行列式的性质把绝大多数元素化为就可利用行列式的性质把绝大多数元素化为0,0,这样就达到简化计算的这样就达到简化计算的效果效果例例 求行列式的值求行列式的值解 行列式第行列式第1 1列有共同元素列有共同元素,第第2 2列有共同元素列有共同元素 ,第第n 列有列有共同元素共同元素.根据这些特点给原行列式加边得根据这些特点给原行列式加边得给加边后的行列式的第给加边后的行列式的第1 1行乘行乘加到第加到第i i行上行上(i=1,2,(i=1,2,n),n)得得=今天给同学们介绍的是计算行列式最常用的几种今天给同学们介绍的是计算行列式最常用的几种方法,行列式类型有很多,在具体的求解过程中要方法,行列式类型有很多,在具体的求解过程中要根据行列式本身的结构特点选取恰当的方法。根据行列式本身的结构特点选取恰当的方法。