ImageVerifierCode 换一换
格式:PPT , 页数:42 ,大小:3.17MB ,
资源ID:862102      下载积分:20 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 微信支付   
验证码:   换一换

加入VIP,免费下载资源
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.wodocx.com/d-862102.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数列概念公开课课件.ppt)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(发送邮件至2622162128@qq.com或直接QQ联系客服),我们立即给予删除!

数列概念公开课课件.ppt

1、数数列列请在棋盘的第1格子里放1颗麦子,在第2个格子里放2颗麦子,第3个格子里放4颗麦子,以此类推。后面第一格里的麦子是前一格子里的麦粒数的2倍,直到第64格。陛下您的国库里麦子够搬吗?多少麦子?多少麦子?(1)国际象棋起源于古印度,关于国际象棋有这样一个传说,)国际象棋起源于古印度,关于国际象棋有这样一个传说,国王想赏赐国际象棋的发明者,于是有下面一段对话国王想赏赐国际象棋的发明者,于是有下面一段对话122223242526263你想得到什么样的赏赐?陛下赏小人几粒麦子就行了。OK1+2+22+263=?一、创设情境一、创设情境一、创设情境一、创设情境?456781456781233264个

2、格个格子子你认为国王你认为国王有能力满足有能力满足上述要求吗上述要求吗每个格子里的麦粒数都每个格子里的麦粒数都是是前前一个格子里麦粒一个格子里麦粒数的数的2倍倍且共有且共有 64格子格子?1844,6744,0737,0955,1615三角形三角形数数1,3,6,10,.正方形数正方形数1,4,9,16,观察下列图形:观察下列图形:提问:这些数有什么规律吗?提问:这些数有什么规律吗?特点:特点:1 1、都是一列数;、都是一列数;2 2、有一定顺序;、有一定顺序;二、概念形成二、概念形成二、概念形成二、概念形成疏理归纳有关概念疏理归纳有关概念按一定次序次序排列的一列数叫数列数列数列数列数列中的每

3、一个数叫做这个数列的项项项项各项依次叫做这个数列的第第第第1 1项项项项(或首项首项首项首项),第第第第2 2项项项项,第第第第n n项项项项,数列的一般形式一般形式一般形式一般形式可以写成:a1,a2,an,简记为 a an n,其中an是数列 的第n项。数列分类数列分类数列分类数列分类:有穷数列,无穷数列;二、概念形成二、概念形成二、概念形成二、概念形成概念的反思与巩固概念的反思与巩固1 1、数列中的数可以重复吗?、数列中的数可以重复吗?为为“-5,-3,-1,1,3,5-5,-3,-1,1,3,5,”,指出其中,指出其中3.3.设数列设数列、各是什么数?各是什么数?2.2.数列数列“1

4、1,2 2,3 3,4 4,5 5”与与 数列数列“5 5,4 4,3 3,2 2,1 1”是否为同一个数列?是否为同一个数列?4 4、数列与数集有什么区别?数列与数集有什么区别?思考思考思考思考数列和集合有什么关系?数列和集合有什么关系?1.1.1.1.数列的表示数列的表示数列的表示数列的表示 的大括号与集合的表示用大的大括号与集合的表示用大的大括号与集合的表示用大的大括号与集合的表示用大括号是一致的括号是一致的括号是一致的括号是一致的.2.2.2.2.数列是无互异性数列是无互异性数列是无互异性数列是无互异性,但具有有序性,但具有有序性,但具有有序性,但具有有序性.如:数列:如:数列:如:数

5、列:如:数列:1515,5 5,1616,1616,2828,3232 数列:数列:数列:数列:5 5,1515,1616,1616,2828,3232 对于数列中的每个序号对于数列中的每个序号n n,都有唯一的一个数(项)都有唯一的一个数(项)a an n与之与之对应。对应。1 3 5 7 2n-11234n项项项数项数(自变量)(自变量)(函数值)(函数值)数列的实质:数列的实质:结论:数列是一种特殊的函数结论:数列是一种特殊的函数.5 5、数列的实质:、数列的实质:1,2,22,23,24,25,26,27,263;(1 1)(2 2)(3 3)20,25,30,35,40,45,;(4

6、 4)10,20,30,5000;(5 5)1,2,3,5,6,56.如数列(如数列(4 4):):项项 10 20 30 40 50 60 10 20 30 40 50 60 a an n 序号序号 1 2 3 4 5 6 n 二、概念形成二、概念形成二、概念形成二、概念形成概念的深化与完善概念的深化与完善概念的深化与完善概念的深化与完善 思考:思考:思考:思考:上述5个数列中的项与序号的关系有没有 规律?如何总结这些规律??an=10n6.1 数列的概念将正整数从小到大排成一列数将正整数从小到大排成一列数为为1,2,3,4,5,(1)将将2 2的正整数指数幂从小到大排成排成一列数为的正整数

7、指数幂从小到大排成排成一列数为 一个数列的第n项如果能够用关于项数n的一个式子来表示,那么这个式子叫做这个数列的通项公式通项公式.二、概念形成二、概念形成二、概念形成二、概念形成概念的深化与完善概念的深化与完善概念的深化与完善概念的深化与完善项(项(an)序号序号(n)1,2,3,4,5,例例1 1 根据下面数列根据下面数列 a an n 的通项公式,写出它的前的通项公式,写出它的前5 5项:项:(1)(2)三、巩固知识三、巩固知识 典型例题典型例题453412分析分析:在通项公式中依次取在通项公式中依次取1,2,3,4,5,1,2,3,4,5,就可以得到数列的前五项就可以得到数列的前五项.解

8、解:(1)(1)数列的前五项是数列的前五项是:(2)(2)数列的前五项是数列的前五项是:-1,2,-3,4,-5:-1,2,-3,4,-5236.1 数列的概念例例2 2 根据下列各无穷数列的前根据下列各无穷数列的前4 4项项,写出数列的一个写出数列的一个通项公式通项公式.(1)5,10,15,20,;解解 (1 1)数列的前)数列的前4 4项与其项数的关系如下表:项与其项数的关系如下表:关系关系2020151510105 54 43 32 21 1项数项数nna由此得到,该数列的一个通项公式为由此得到,该数列的一个通项公式为 三、巩固知识三、巩固知识 典型例题典型例题6.1 数列的概念解:解

9、:(2)(2)数列前数列前4 4项与其项数的关系如下表:项与其项数的关系如下表:序号关系4321由此得到,该数列的一个通项公式为由此得到,该数列的一个通项公式为 三、巩固知识三、巩固知识 典型例题典型例题6.1 数列的概念(3)1,1,1,1,解:(解:(3 3)数列前)数列前4 4项与其项数的关系如下表:项与其项数的关系如下表:关系关系1 11 11 11 14 43 32 21 1序号序号由此得到,该数列的一个通项公式为由此得到,该数列的一个通项公式为 由数列的由数列的有限项探求有限项探求通项公式时,通项公式时,答案不一定答案不一定是唯一的是唯一的 三、巩固知识三、巩固知识 典型例题典型例

10、题根据下面数列根据下面数列aan n 的通项公式,写出它的前的通项公式,写出它的前5 5项:项:an=n2an=10nan=5(-1)n+11,4,9,16,2510,20,30,40,505,-5,5,-5,5四、课堂练习四、课堂练习四、课堂练习四、课堂练习2、写出下面数列的一个通项公式,使它的前四项分、写出下面数列的一个通项公式,使它的前四项分别是下列各数:别是下列各数:(1)1,3,5,7;(2)四、课堂练习四、课堂练习四、课堂练习四、课堂练习例例3 3 判断判断1616和和4545是否为数列是否为数列33n n+1+1中的项中的项,如果是如果是,请指出请指出是第几项是第几项.将将161

11、6代入数列的通项公式有代入数列的通项公式有解解:数列的通项公式为数列的通项公式为解得解得所以所以,45不是数列不是数列中的项中的项 所以,所以,1616是数列是数列中的第中的第5 5项项将将4545代入数列的通项公式有代入数列的通项公式有解得解得三、巩固知识三、巩固知识 典型例题典型例题例例4 4:已知数列:已知数列a an n的第的第1 1项是项是1 1,以后的各项由公式,以后的各项由公式 给出,写出这个数列的前给出,写出这个数列的前5 5项项.解:据题意可知:a1=1,三、巩固知识三、巩固知识 典型例题典型例题2,4,(,()16,32,(,(),),128(2)()(),),4,9,16

12、,25,(,(),),496483611、观察下面数列的特点,用适当的数填空,并写出、观察下面数列的特点,用适当的数填空,并写出每个数列的一个通项公式每个数列的一个通项公式五、检测与反馈五、检测与反馈五、检测与反馈五、检测与反馈2 2根据下面数列的通项公式,写出它的前根据下面数列的通项公式,写出它的前5 5项:项:五、检测与反馈五、检测与反馈五、检测与反馈五、检测与反馈3 3、根据下面数列、根据下面数列aan n 的通项公式,写出它的第的通项公式,写出它的第7 7项项与第与第1010项:项:an=n(n+2)an=-2n+363,120-125,-1021五、检测与反馈五、检测与反馈五、检测与

13、反馈五、检测与反馈THANK YOUSUCCESS2023/9/2522可编辑 4、写出下列数列的一个通项公式:写出下列数列的一个通项公式:(1 1)(2 2)2 2,0 0,2 2,0 0;(3 3)9 9,9999,999999,99999999;(4 4)0.90.9,0.990.99,0.9990.999,0.9999.0.9999.五、检测与反馈五、检测与反馈五、检测与反馈五、检测与反馈不是所有数不是所有数列都有通项列都有通项公式公式.5 5、已知数列、已知数列a an n中,中,a a1 1=1,=1,a a2 2=2,=2,a an n=3=3a an n1 1+a an n2

14、2(n n3)3),试写出数列,试写出数列an的前的前4 4项项.解:由已知得解:由已知得a a1 1=1,a=1,a2 2=2=2,a a3 3=3a=3a2 2+a+a1 1=7=7,a a4 4=3a=3a3 3+a+a2 2=23=23五、检测与反馈五、检测与反馈五、检测与反馈五、检测与反馈所以,数列所以,数列aan n 的前的前4 4项是项是1,2,7,23.1,2,7,23.思考题:思考题:思考题:思考题:(看图并回答问题看图并回答问题)4,5,6,7,8,9,101-2-3-4-5-6-7-你知道第二十排木头的数目是多少吗?你知道堆到第你知道第二十排木头的数目是多少吗?你知道堆到

15、第二十排总共有多少木头吗?二十排总共有多少木头吗?五、检测与反馈五、检测与反馈六、课堂小结六、课堂小结数列数列数列数列数列有关概念数列有关概念数列有关概念数列有关概念数列与函数的关系数列与函数的关系数列与函数的关系数列与函数的关系通项公式通项公式通项公式通项公式求通项公式求通项公式求通项公式求通项公式数列中的项数列中的项数列中的项数列中的项1 1、说出下面数列一个通项公式,使它的前、说出下面数列一个通项公式,使它的前4 4项分别是项分别是下列各数:下列各数:2,4,6,8an=2n七、布置作业七、布置作业(5)7,77,777,7777,2 2、根据数列、根据数列 的通项公式,写出它的第的通项

16、公式,写出它的第7 7项与第项与第1010项。项。七、布置作业七、布置作业3 3、已知数列、已知数列a an n中,中,a a1 1=1,=1,a a2 2=2,=2,a an n=3=3a an n1 1+a an n2 2(n n3)3),试写出数列,试写出数列an的前的前5 5项项.解:由已知得解:由已知得a a1 1=1,a=1,a2 2=2=2,a a3 3=3a=3a2 2+a+a1 1=7=7,a a4 4=3a=3a3 3+a+a2 2=23=23所以,数列所以,数列aan n 的前的前4 4项是项是1,2,7,23.1,2,7,23.4 4 判断判断1616和和4545是否为

17、数列是否为数列33n n+1+1中的项中的项,如果是如果是,请指出是请指出是第几项第几项.将将1616代入数列的通项公式有代入数列的通项公式有解解:数列的通项公式为数列的通项公式为解得解得所以所以,45不是数列不是数列中的项中的项 所以,所以,1616是数列是数列中的第中的第5 5项项将将4545代入数列的通项公式有代入数列的通项公式有解得解得七、布置作业七、布置作业斐波那契數列 斐波那契(Leonardo Pisano Fibonacci,1170 1250),意大利商人兼數學家。斐波那契數列斐波那契數列(Finonnaci sequence)Finonnaci sequence)自第三項開

18、始,每一項都是前兩項的和.數列中的每一項則稱為斐波那契數斐波那契數(Fibonnaci Number)Fibonnaci Number)以符號 FnFn 表示,即:F1=F2=1 F1=F2=1,而,而 Fn=Fn=Fn-1+Fn-2(n2)Fn-1+Fn-2(n2)向日葵的種子向日葵的種子綠色綠色表示按順時針排列的種子表示按順時針排列的種子紅色紅色表示按逆時針排列的種子表示按逆時針排列的種子 植物學家發現:植物學家發現:某種向日葵的種子是按兩組螺線排列,其某種向日葵的種子是按兩組螺線排列,其數目往往是數目往往是連續的斐波那契數連續的斐波那契數 。向日葵的種子向日葵的種子普通大小的向日葵:34

19、條順時針螺線55條逆時針螺線較大的向日葵:條順時針螺線 條逆時針螺線植物的分枝植物的分枝2358132358斐斐波波那那契契數數Back菠蘿的表皮菠蘿的表皮 菠蘿的中心軸菠蘿的中心軸Z Z 軸垂直於軸垂直於Z Z軸的平面軸的平面XOYXOY。量度表皮上每一個六角形的中量度表皮上每一個六角形的中心與平面心與平面XOYXOY的距離的距離,便會發現便會發現菠蘿的表皮菠蘿的表皮其中三個方向是按其中三個方向是按等差數列等差數列排列的:排列的:0,5,10,15,20,0,8,16,24,32,0,13,26,39,52,公差公差5813三個連續的斐波那契數!三個連續的斐波那契數!花瓣的數目花瓣的數目斐波

20、那契數斐波那契數!花瓣的數目是花瓣的數目是:3 5 8 13213 5 5218 133 521鋼琴例子鋼琴例子在一個音階中:白色的鍵數為 8 8黑色的鍵數為 5 5兩個連續的斐波那契數兩個連續的斐波那契數!帕斯卡三角形帕斯卡三角形斐波那契數列斐波那契數列!穿高跟鞋的效應穿高跟鞋的效應假設某女士的原本軀幹與身高比為假設某女士的原本軀幹與身高比為 0.6(0.6(i.e.x:l=0.60)i.e.x:l=0.60)若所穿的高跟鞋的高度為若所穿的高跟鞋的高度為d d,新的軀新的軀幹與高度比為幹與高度比為:(x+d):(l+d)=(0.6 0.6 l+d):(l+d)例:某位女士的身高為160 cm(約5呎3寸)穿高跟鞋的效應穿高跟鞋的效應7.62(3吋吋)1600.600.6125.08(2吋吋)1600.600.6062.54(1 吋吋)1600.60穿了高跟鞋後的新比值(0.6 l+d):(l l +d)高跟鞋高度(d cm)身高(l cm)原本軀幹與身高比值(x:l)穿高跟鞋使腳長腳長與身高身高的比值趨向黃金比黃金比。由此可見,女士們相信穿高跟鞋使她們更美是有數學根據的!0.618

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922