ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:296.39KB ,
资源ID:855935      下载积分:20 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 微信支付   
验证码:   换一换

加入VIP,免费下载资源
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.wodocx.com/d-855935.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(课程设计---卷纸机不可逆调速系统的可控直流电源设计.doc)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(发送邮件至2622162128@qq.com或直接QQ联系客服),我们立即给予删除!

课程设计---卷纸机不可逆调速系统的可控直流电源设计.doc

1、一. 设计的目的本课程设计是电气工程及其自动化专业重要的实践教学环节之一。本课程设计的任务是培养学生综合运用电力电子学、模拟电子技术和电机学所学知识分析、解决工程或科研实际问题的能力。其目的是巩固学生所学知识的同时,提高学生的专业素质,这对于工科学生贯彻工程思想起到十分重要的作用。二. 设计的任务及要求卷纸机不可逆调速系统的可控直流电源设计A 原始数据:P=7.5kW,Ued=220V,Ied=40.8A,n=1480r/min,Ra=0.25,LM=14mH,=1.5。B 设计内容及要求:a) 设计整流电路主电路。b) 设计变压器参数:U1,I1,U2,I2。要求考虑最小控制角min、电网电

2、压波动、晶闸管管压降和变压器漏抗等因素计算变压器二次相电压值,附主要计算步骤。c) 整流元件参数的计算及选择:依据参数计算,正确选择器件型号,并附主要参数。d) 触发电路设计及主要参数的计算,同步电压的选择。e) 设计保护电路:正确选择电压、过流保护电路,简要说明选择依据;计算保护元件参数并选择保护元件型号。f) 电抗器的参数设计三.具体的计算和选择过程 一.主电路的选择根据实验要求的原始数据,直流电机的功率,属于较大功率的电机,同时此电机为直流电机,并且需要较平稳恒定的速度,因此需要驱动电路提供较平稳的电压和电流,而且作为卷纸机的驱动电机,其需要较大的调速范围,综合分析以上因素,所以选用驱动

3、功率大,输出电压脉动较小,而且电压调节范围较大的三相桥式全控整流电路。二.整流变压器的设计及计算 是一个重要参数,选择过低,无法保证输出额定电压。选择过高,又会造成延迟角加大,功率因数变坏,整流元件的耐压升高,增加了装置的成本。一般可按下式计算,即式中_整流电路输出电压最大值;_主电路电流回路个晶闸管正向压降;_线路连接方式系数,三相全控桥的取0.5;_变压器的短路比,对10100kVA变压器,=0.050.1;_变压器二次实际工作电流与额定电流之比,应取最大值。在要求不高的场合或近似估算时,用下式计算则更加方便,即式中 A理想情况下,时整流电压与二次电压之比,即,三相全控桥的为2.34。 变

4、压器二次侧相电流有效值的计算。因为整流器的负载输出端串联有电抗器,一次变压器的二次侧电流可视为大小不变的电流,因此其有效值为:因为故: 变压器一次侧相电流有效值的计算因为在中,已将变压器二次侧相电压有效值计算出来故可计算出变压器的变比K假设采用的变压器为-Y连接,一次侧为接,二次侧为Y接。K=380/ 128.286= 2.96213因此,一次侧电流的有效值=KI=99.8700综上所述:变压器的主要参数 k 为k380V128.286V100A33.29A3三.晶闸管的选择 额定电流的计算 因为本驱动电流的主电路应用的是三相桥全控整流电路,因此晶闸管的电流的有效值与直流端的输出电流的关系为因

5、此可求出晶闸管的额定电流考虑到晶闸管的过载能力差,在选择晶闸管的额定电流时,取实际需要的1.52倍,使之有一定的安全裕量,保证晶闸管的可靠运行。因此晶闸管的额定电流计算公式为:所以在此主电路中晶闸管的额定电流为: 额定电压的计算由三相桥全控整流电路的特点得出晶闸管在电路中所可能承受的最大正反向电压为:所以元件正反向重复峰值电压必须满足: 式中考虑电网的波动、过压等的安全因素,一般取= 23。在380V的整流电路中,取2.2。所以根据以上晶闸管额定电压的分析其额定电压为:691.3175V 晶闸管的选择极其主要参数 691.3175V故晶闸管选用KP系列的晶闸管,其主要参数为额定电50A额定电压

6、100-2400V触发电流150mA四.触发电路的设计.触发电路的选择:相比于分立元件的触发电路,集成电路可靠性高,技术性能好,体积小,功耗低,调试方便。随着集成电路制作技术达的提高,晶闸管触发电路的集成化已经逐渐普及,现已逐步取代分立式电路。TC787是为移相触发集成电路而设计的单片集成电路。与TCA785及KJ(或KC)系列集成电路相比,具有功耗小、功能强、输入阻抗高、抗干扰性能好、移相范围宽、外接元件少等优点,而且装调简便、使用可靠,只需一个这样的集成电路,就可完成3只TCA785与1只KJ041、1只KJ042或5只KJ系列器件组合才能具有的三相移相功能。另外,TC787分别具有A型和

7、B型器件,使用户可方便地根据自己应用系统所需要的工作频率来选择(工频时选A型器件,中频100400Hz时选B型器件)。考虑到以上因素,所以触发设计用TC787为基础的触发电路。.触发电路芯片的介绍:(1) 同步电压输入端:引脚1(Vc)、引脚2(Vb)及引脚18(Va)为三相同步输入电压连接端。应用中,分别接经输入滤波后的同步电压,同步电压的峰值应不超过TC787的工作电源电压VDD。(2) 脉冲输出端:TC787被设置为全控双窄脉冲工作方式时(此实验中将TC787设置为全控双脉冲 工作方式),引脚8为与三相同步电压中C相正半周及B相负半周对应的两个脉冲输出端;引脚12为与三相同步电压中A相正

8、半周及C相负半周对应的两个脉冲输出端;引脚11为与三相同步电压中C相负半周及B相正半周对应的两个脉冲输出端;引脚9为与三相同步电压中A相同步电压负半周及C相电压正半周对应的两个脉冲输出端;引脚7为与三相同步电压中B相电压负半周及A相电压正半周对应的两个脉冲输出端;引脚10为与三相同步电压中B相正半周及A相负半周对应的两个脉冲输出端。应用中,均接脉冲功率放大环节的输入或脉冲变压器所驱动开关管的控制极。(3) 控制端 引脚4(Vr):移相控制电压输入端。该端输入电压的高低,直接决定着TC787输出脉冲的移相范围,应用中接给定环节输出,其电压幅值最大为TC787的工作电源电压(818V或),在此触发

9、电路中取15V,为单电源工作方式。 引脚5(Pi):输出脉冲禁止端。该端用来进行故障状态下封锁TC787的输出,高电平有效,应用中,接保护电路的输出。 引脚6(Pc):TC787工作方式设置端。当该端接高电平时,TC787输出双脉冲列;而当该端接低电平时,输出单脉冲列。 引脚13(Cx):该端连接的电容Cx的容量决定着TC787或TC788输出脉冲的宽度,电容的容量越大,则脉冲宽度越宽。 引脚14(Cb)、引脚15(Cc)、引脚16(Ca):对应三相同步电压的锯齿波电容连接端。该端连接的电容值大小决定了移相锯齿波的斜率和幅值。(4) 电源端TC787可单电源工作,亦可双电源工作。单电源工作时引

10、脚3(VSS)接地,而引脚17(VDD)允许施加的电压为818V。双电源工作时,引脚3(VSS)接负电源,其允许施加的电压幅值为-4-9V,引脚17(VDD)接正电源,允许施加的电压为+4+9V。 .触发电路的设计及其参数的计算:如触发电路的电路图所示:图中电容C1C3为隔直耦合电容,而C4C6为滤波电容,它与R1-R3构成滤去同步电压中毛刺的环节。同时,RP1-RP3三个电位器的不同调节,可实现060的移相,它们与共同起到移相的作用,从而适应不同变压器的要求,所以取在TC787的同步电压输入端支路中,两个R起稳定电压的作用,同时不可以有太大的电流:故取 此时通过其电流为 电流足够小,故不会影

11、响总电路的电压电流。因为在同步信号为50HZ时,电容采用0.15F电容时,相对误差小于5%,以锯齿波线性好,幅度大,不平顶。所以去 电容决定调制脉冲或输出方波的宽度,用0.01的电容,脉冲宽度为1mS.其脉冲宽度为比较良好的脉冲宽度,故取0.01=0.01 同步电压的选择:由上述TC787的介绍中TC787被设置为全控双窄脉冲工作方式时,引脚8为与三相同步电压中C相正半周及B相负半周对应的两个脉冲输出端;引脚12为与三相同步电压中A相正半周及C相负半周对应的两个脉冲输出端;引脚11为与三相同步电压中C相负半周及B相正半周对应的两个脉冲输出端等说明中可知,TC787输入的主电路的电压与同步电压之

12、间的相位关系是可调的,调节的大小就可以调节其相位关系,以便于适应各种组别变压器的使用。在此触发电路同步电压选择时,将调节取消其对主电路电压的移相最用,即的相位是同相的。由此可得出同步变压器的矢量图如下:由矢量图可知,触发电路的变压器的组别与主电路的变压器的组别是相同的,即触发电路变压器的组别与主电路变压器的组别相同,假设在此主电路中所用的变压器组别为D,y -11 ,则触发电路变压器的组别为D,y -11,5。而且当触发电路受外界干扰使各相同步电压不同步时,可以调节调节相位关系从而使同步电压保持同步。五. 设计保护电路电力电子器件以及主电路的保护大致分为两种:过流保护和过压保护。1. 过流保护

13、过流保护电路的选择电力电子电路运行不正常或发生故障时,可能发生过电流,其中采用快速熔断器是一种是一种常用的措施,其快速性与有效性都可以满足对电子线路保护的要求。快速熔断器的保护方式可以分为全保护和短路保护。全保护是指不论过载还是短路均由快熔进行保护。此方式只适用于小功率装置或器件裕量较大的场合。短路保护方式是指只在短路电流较大的区域起保护的作用。为了安全可靠的保护电子线路,故此过流保护电路选择全保护方式。其电路图如下:快熔式保护过流电路过流保护电流参数的计算除了与普通熔断器一样要考虑熔断器电压必须大于线路工作电压、熔断器的电流等级应大于或等于内部焙体的额定电流外,还需特别注意熔体的额定电流是有

14、效值,而晶闸管的额定电流是正弦半波的平均值,其有效值为,通常熔体的额定电流以下式选取:1.57为了保证可靠与方便起见,可取 所以保护电路中的快熔额定电流根据以上参数,可选熔断体的型号为:2. 过压保护过压保护电路的选择压敏电阻的最大特点是当加在它上面的电压低于它的阀值UN时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。在其阀门打开后,相当与负载短路,电流瞬间增大,由于过流电路的保护,在其电流增大的瞬间会使快熔熔断从而使电流得到保护。其保护特点可以满足主电路的要求,并且其结

15、构简单,时效性强。因此此过压保护电路选用压敏电阻保护电路。其原理图如下:压敏电阻电压保护电路过压保护电路的参数计算压敏电阻的选用主要考虑额定电压和通流容量。额定电压的下限是线路工作电压的峰值,考虑到电网电熨斗额波动以及多次承受冲击电流以后的数值肯会下降,因此的电压的取值应适当加大,通常建议以30%的裕量计算,即式中压敏电阻两端正常工作电压的有效值,即最大连续电压。压敏电压:128.2860V=408.51V最大连续电压:=流通容量的选择原则是压敏电阻允许通过的最大电流应大于泄放浪涌电压时流过压敏电阻的实际浪涌峰值电流。实际浪涌电流很难计算,一般情况在变压器容量大、距外线路近且缺少避雷器的场合应

16、选用流通容量较大的压敏电阻。通过以上分析,压敏电阻的主要参数为:压敏电压:=最大连续电压:=所以选择压敏电阻的型号为:六.电抗器的选择 整流电路中的电感按作用可分为滤波和限制环流构大类。这里主要是考虑用于滤波的电感量的计算。整流器输出回路串入电感的作用主要是平滑滤波、维持电流连续、抑制谐波分量和限制短路电流。对于三相桥式全控整流电路电路中总的电感是:式中,常数0.693与整流电路的形式和电源频率有关,对于三相桥式电流为0.639,(0.050.1)是所要求的最小临界电流。根据以上的分析和公式推导可得出:以上得出的中包括整流变压器的漏电感、电枢电感和平波电抗器的电感,同时,对于三相桥式整流电路,

17、因变压器两串联导电,所以应该以带入。 因此最终的出的平波电抗器的电感为为变压器的漏感电动机的电枢电感故四.总结:通过几天的查询资料,思考计算,以及书写课程设计,完成了电力电子课程设计报告,在这其中我觉得收获的不仅是这份课程设计报告,在书写的过程中,我遇到了许多理想情况下不会出现的问题,比如电网波动和最小导通角对整流电路输出电压的影响,平波电抗器的实际的计算,这些工程上的思想都是我们平时在书本的题目中很少见到的,了解这些工程上的思想有利于我们以后对于这门课程的应用。同时,在书写课程设计的过程中,以使我学会了怎么迅速的从网上图书馆查找相关资料,怎么用word和其中的公示编译器进行课程设计的书写。总之,在完成这份课程设计报告的同时,我学会了很多与电力电子这门课程相关的知识,也锻炼了许多需要的能力。五参考文献1 王兆安,黄俊主编.电力电子技术(第4版).北京:机械工业出版社,20042 莫正康 半导体变流技术(第二版)机械工业出版社,19973 刘志刚 叶斌 梁晖 电力电子学 清华大学出版社 北京交通大学出版社 20044 赵光林 常用电子元器件 识别/检测/选用一读通 电子工业出版社 20075 张宪 王春娴 电子元器件的选用与检测问答 化学工学出版社 2006第 14 页

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922