ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:92KB ,
资源ID:850497      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 微信支付   
验证码:   换一换

加入VIP,免费下载资源
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.wodocx.com/d-850497.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(土木工程外文翻译--超高层建筑结构横向风荷载效应(适用于毕业论文外文翻译+中英文对照).doc)为本站会员(管**)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(发送邮件至2622162128@qq.com或直接QQ联系客服),我们立即给予删除!

土木工程外文翻译--超高层建筑结构横向风荷载效应(适用于毕业论文外文翻译+中英文对照).doc

1、本科毕业设计(论文)外文翻译译文学生姓名: 院 (系): 专业班级: 指导教师: 完成日期: 20 年 月 日 超高层建筑结构横向风荷载效应Across-wind loads and effects of super-tall buildings and Structures 作者:GU Ming & QUAN Yong起止页码:25312541出版日期(期刊号):August 25, 2011 doi: 10.1007/s11431-011-4543-5出版单位: science china Technological Sciences 外文翻译译文:摘要随着建筑高度的不断增加,横向风荷载效

2、应已经成为影响超高层建筑结构设计越来越重要的因素。高层建筑结构的横向风荷载效应被认为由空气湍流,摇摆以及空气流体结构相互作用所引起的。这些都是非常复杂的。尽管30年来,研究人员一直关注这个问题,但横向风荷载效应的数据库以及等效静力风荷载的计算方法还没有被开发,大多数国家在荷载规范里还没有相关的规定。对超高层建筑结构的横向风荷载效应的研究成果主要包括横向风荷载的动力以及动力阻尼的测定,数据库的开发和等效静力风荷载的理论方法的等等。在本文中,我们首先审查目前国内外关于超高层建筑结构风荷载的影响的研究。然后我们在阐述我们的研究成果。最后,我们会列举我们研究成果在超高层建筑结构中应用的的案例。引言随着

3、科技的发展,建筑物也越来越长、高、大,越来越对强风敏感。因此,风工程研究人员面临着更多新的挑战,甚至一些未知的问题。例如,超高层建筑现在在全世界普遍流行。高度为443米的芝加哥希尔斯塔保持了是世界上最高建筑物26年的记录,现在还有几十个超过400米的超高层建筑被建造。828米高的迪拜塔已经建造完成。在发达国家,甚至有人建议建造数千米的“空中城市”。随着高度的增加,轻质高强材料的使用,风荷载效应特别是具有低阻尼的超高层建筑横向风动力响应将变得更加显著。因此,强风荷载将成为设计安全的超高层建筑结构中的一个重要的控制因素。达文最初引入随机的概念和方法应用发哦顺风向荷载效应的建筑物和其他结构的抗风研究

4、。之后,研究人员完善了相关的理论和方法,并且主要的研究成果已经反映在一些国家的结构设计荷载规范里。对现代超高层建筑结构,横风向风荷载的作用可能已经超过顺风向荷载效用。虽然研究人员已经关注这个方向已经30多年了,但能够被广泛接受的横风向荷载数据库以及等效静力荷载的计算方法还没有形成。只有少数国家在他们的荷载规范里有相关的内容和规定。因此,研究超高层建筑结构横风向风振和等效静力荷载在超高层建筑设计领域内具有重要的理论意义和实用价值。横风向荷载及作用机制过去的研究主要集中在横风向荷载机制。郭指出横风向荷载的激发主要由于被公认为空气动力阻尼的尾流、空气湍流以及风荷载耦合作用。索拉里认为横风向荷载主要由

5、于尾流的原因所引起。卡里姆声称横风向的效应主要是由分离剪切层和尾流波动引起的横向均匀压力波动所引起的。目前,高层建筑横风向荷载机制已被人为是流入湍流激发、尾流激发、以及气动弹性影响。湍流以及尾流激励一般是外部空气动力,在本文章中,所涉及的统称为空气动力。同时,气体的弹性效应可以被认为是气体动力阻尼。横风向气体动力不再像顺向风一样符合准稳态假设。因此,横向风荷载谱不能直接作为一个脉动风速谱。对不稳定风压力来说,风洞试验技术是目前研究横向风动力的主要技术。风洞试验技术主要包括气体弹性模型试验、高频力平衡试验以及对多点压力测量的刚性模型实验技术。用横风向外部动力,横风向气动阻尼,横向风响应和建筑结构

6、等效静力风荷载的数据可以对超高层建筑结构进行计算。横风向气动力如上所述,横风向气动力基本上可以通过以下途径获得:从气动弹性模型在一个风洞的横风向响应确定横风向气动力;通过刚性模型风压空间一体化获得横向风动力;使用高频测力天平技术测量基底弯矩来获得广义的气动力。从气动弹性模型的动态响应确定横风向气动力。这种方法采用的是气动弹性模型的横风向风振响应,结合动态特性的模型识别横风向气动力。墨尔本对对一系列圆形、方形、六角形、多边形沿高度分布进行气动弹性模型风洞试验。然而进一步试验表明您横风向气动阻力与气动力混合在一起,使他难以准确地提取气动阻尼力。因此,该方法很少使用。风压积分法研究人员建议用风压积分

7、法获取更准确的高层建筑横风向气动力。伊斯兰等人采用这种方法得到横风向气动力,陈等人研究了典型建筑结构在不同风场条件横风向气动力。影响横风向气动力的因素主要有湍流强度、湍流尺度。湍流强度被发现扩大带气动力和降低峰值。然而,湍流强度被认为对总能量几乎没有影响。因此,研究人员在某种程度上已经意识到了在风力条件定量规则的变化横风气动力。梁等人使用这种方法检查了建筑物上的典型矩形边界层风洞横风向气动力,从而提出高大的建筑物的经验公式和横风向动态响应模型。结果表明, 横风向湍流对于横风向气动力的贡献比那些激励要小的多。基于大量的结果,导出横风向湍流激励和激发后的PSD计算公式。第一广义的横风向气动力计算可

8、以通过在刚性建筑模型整合压力分布得到,这是该方法一个重要的优越性。然而,考虑到在这类方法需要大量的大规模的结构测压,同步测量风压是很难实现的。此外,对于建筑和结构复杂的配置,准确的风压分布和空气动力难以使用这种方法。高频测力平衡技术与压力测量技术相比,高频力平衡技术对于得到总气动力有其独特的优势,检测和数据分析过程都很简单。因此这项技术通常应用于初期设计阶段的建筑外观的选择。目前这项技术被广泛应用于作用在超高层建筑结构的全风荷载以及动力响应计算。高频力平衡技术自从1970年已经逐渐发展起来。赛马可等人是第一批把此技术应用到模型测量的人。他们最初提出平衡模型系统应有一个比风力频率更高的固有频率。

9、由常和达文发展的平衡技术标志着平衡设备的成熟。卡里姆进行了一项实验研究。对于在城市和郊区具有不同截面形式的高层建筑的横风向气动力研究表明对于建筑物风的不确定以及结构参数对横风向空气动力的设计有很小的影响并且顺风向和横风向气动力或扭矩之间的联系时微不足道的。但横风向动力和扭矩之间的联系是非常密切的。这个结论对于三维方向精确的风荷载模型是很重要的。特别是石和全等人做了一系列关于矩形建筑的边率,建筑物横截面形状,建筑的面率的效应以及用五元平衡的高层建筑横风向动力设计的风域条件。事实上,基于大量的风隧道检测结果典型高层建筑横风向气动力系数的公式已经被我们建立了。横风向气动阻尼1978年卡里姆对基于气动

10、弹性模型技术和风压积分法的高层建筑横风向动力响应做了一次调查研究。他指出由在一定范围内风压力测试获得的横风向气动力计算而得到的横风向风振响应总是比那些相同建筑模型的气动弹性模型要小。这个重要的研究成果使得研究人员认识到横风向气动负阻尼的存在。后来,研究人员对这个问题进行了大量的研究并且找到了有效的方案来确定气动阻尼。第一种方法是通过比较基于来自刚性模型试验和气动弹性模型试验的气动力所得到的到哪个台响应。第二种方法是从由气动弹性模型或强迫振动模型所得到的总气动力中分离出气动阻力。第三种方法是从气动弹性模型分离气动阻尼的的识别方法。此外,研究人员意识到风因素的影响规律。这些因素包括结构形状、结构动

11、力参数、风条件等等。卡里姆等人是第一批提出通过比较来确定气动阻尼的方法。陈等人采用这种技术来研究横风向效应和高层建筑结构的动态阻尼并提出了一个气动阻尼公式。史迪克最初制造了一批测定总气动力、气动阻尼力与气动力的强迫振动测量设备。他测量高层建筑模型基底弯矩是通过一个专门的设计装置产生振动所产生的有关的气动力从总气动力脱离进而分解为气动应力和气动阻尼力获得气动阻尼。柯伯试图对谐波振动建筑模型测量风压获得总气动力。然后用类似史迪克的方法计算空气阻尼。这种方法的优点是真实的建筑特性并非必须被考虑到。这种方法更方便更实用,特别是在推广实验结果。这种方法的的主要缺点是它需要复杂的设备,尤其是直到现在多元耦

12、合装置是不可用的。确定气动阻尼的随机振动响应的气动弹性模型课采用适当的系统识别技术,其中包括频域法,时域的方法以及时域频域的方法。在这些方法中随机减量法、时域方法被广泛采用以确定高层建筑的气动阻尼。杰瑞介绍随机减量法来识别结构阻尼。马克采用随机减量法确定高层建筑顺横风向气动阻尼。他们分析了影响建筑长宽比、边比、气动阻尼、结构阻尼。田村等人用随机减量技术确定超高层建筑气动阻尼。全等人通过实验确定在不同的风领域具有不同结构中阻尼方形截面的横风向气动阻尼,并得出了一个经验公式。这些研究成果已通过相关的中国规范。秦和谷是第一个引入随机空间识别方法于气动参数的确认的研究人员。这些气动参数包括大跨度桥梁气

13、动刚度和阻尼。于随机变量法相比,随机空间识别方法具有更多的优点。它能克服随机变量法的弱噪音抵抗力和需要大量实验数据的缺点。秦采用这种方法来确定高层建筑的气动阻尼。规范的实用性如上所说,虽然研究者一直关注高层建筑风荷载超过30年了,但被广泛接受的横风向风荷载数据库和计算方法,等效静力风荷载尚未开发。此外,只有少数国家采用相关的规定和代码。于其他国家相比,日本建筑协会提供了计算高层建筑结构横风向荷载的最好方法。然而公式的横风向代码知适用于高层建筑高宽比小于六,这似乎很难满足实际需要。而且此方法在这种方法里气动阻尼没有被考虑。在目前的中国建筑结构荷载规范只提供了一个简单的方法来计算涡激共振的高耸结构

14、,而一般不适用于高层建筑结构抗风设计。在题为“高层建筑钢结构设计详细说明”里,我们的研究成果已经通过。总结随着建筑高度不断增加,横风向荷载效应已经成为超高层建筑结构设计的重要因素。目前,对超高层建筑结构横风向荷载的研究主要包括横风向风荷载的机制,横风向气动力、气动阻尼和在规范中的应用。因此我们的一些研究成果主要有典型建筑结构的横风向力,气动阻尼以及在中国规范的应用。最后介绍了典型的案例,在这个案例中建造更高层建筑的趋势预示着风工程研究人员将面临着更多更新的挑战,甚至到现在他们都没有意识到的问题。因此需要更多地努力去解决工程设计问题,同时进一步发展风工程。英文原文:Across-wind loa

15、ds and effects of super-tall buildings and StructuresAbstractAcross-wind loads and effects have become increasingly important factors in the structural design of super-tall buildings and structures with increasing height. Across-wind loads and effects of tall buildings and structures are believed to

16、 be excited by inflow turbulence, wake, and inflow-structure interaction, which are very complicated. Although researchers have been focusing on the problem for over 30 years, the database of across-wind loads and effects and the computation methods of equivalent static wind loads have not yet been

17、developed, most countries having no related rules in the load codes. Research results on the across-wind effects of tall buildings and structures mainly involve the determination of across-wind aerodynamic forces and across-wind aerodynamic damping, development of their databases, theoretical method

18、s of equivalent static wind loads, and so on. In this paper we first review the current research on across-wind loads and effects of super-tall buildings and structures both at home and abroad. Then we present the results of our study. Finally, we illustrate a case study in which our research result

19、s are applied to a typical super-tall structure. Introduction With the development of science and technology, structures are becoming larger, longer, taller, and more sensitive to strong wind. Thus, wind engineering researchers are facing with more new challenges, even problems they are currently un

20、aware of. For example, the construction of super tall buildings is now prevalent around the world. The Chicago Sears Tower with a height of 443 m has kept the record of the worlds tallest building for 26 years now. Dozens of super-tall buildings with heights of over 400 m are set to be constructed.

21、Burj Dubai Tower with a height of 828 m has just been completed. In developed countries, there are even proposals to build “cities in the air” with thousands of meters of magnitude. With the increase in height and use of light and high-strength materials, wind-induced dynamic responses, especially a

22、cross-wind dynamic responses of super-tall buildings and structures with low damping, will become more notable. Hence, strong wind load will become an important control factor in designing safe super-tall buildings and structures. Davenport initially introduced stochastic concepts and methods into w

23、ind-resistant study on along-wind loads and effects of buildings and other structures. Afterward, researchers developed related theories and methods, and the main research results have already been reflected in the load codes of some countries for the design of buildings and structures. For modern s

24、uper-tall buildings and structures, across- wind loads and effects may surpass along-wind ones. Although researchers have been focusing on the complex problem for over 30 years now, the widely accepted data-base of across-wind loads and computation methods of equivalent static wind loads have not be

25、en formed yet. Only a few countries have accordingly adopted the related con-tents and provisions in their codes. Therefore, studying across-wind vibration and the equivalent static wind loads of super-tall buildings and structures is of great theoretical significance and practical value in the fiel

26、d of structural design of super-tall buildings and structures. The current paper thus reviews the research situation of across-wind loads and effects of super-tall buildings and structures both at home and abroad. Then, the research results given by us are presented. Finally, a case study of across-

27、wind loads and effects of a typical super-tall structure is illustrated. Mechanism of across-wind loads and effects Previous researches focused mainly on the mechanism of across-wind load. Kwok pointed out that across-wind excitation comes from wake, inflow turbulence, and wind-structure interaction

28、 effect, which could be recognized as aerodynamic damping. Solari attributed the across-wind load to across-wind turbulence and wake excitations, considering wake as the main excitation. Islam et al. and Kareem claimed that across-wind responses are induced by lateral uniform pressure fluctuation du

29、e to separation shear layer and wake fluctuation. Currently, the mechanism of across-wind load on tall buildings and structures has been recognized as inflow turbulence excitation, wake excitation, and aero elastic effect. Inflow turbulence and wake excitation are essentially the external aerodynami

30、c force, which is collectively referred to in the present paper as aerodynamic force. Meanwhile, aero elastic effect can be treated as aerodynamic damping. Across-wind aero-dynamic force no longer conforms to quasi-steady assumption as the along-wind one; thus, the across-wind force spectra cannot b

31、e directly expressed as a function of inflow fluctuating wind velocity spectra. Wind tunnel test technique for unsteady wind pressures or forces is presently a main tool for studying across-wind aerodynamic forces. The wind tunnel experiment technique mainly involves the aero-elastic building model

32、experiment technique, high frequency force balance technique, and rigid model experiment technique for multi-point pressure measurement. Using data of across-wind external aerodynamic force and across-wind aerodynamic damping, across-wind responses and the equivalent static wind load of buildings an

33、d structures can be computed for the structural design of super-tall buildings and structures. Across-wind aerodynamic force As stated above, the across-wind aerodynamic force can be obtained basically through the following channels: identifying across-wind aerodynamic force from across-wind respons

34、es of an aero elastic building model in a wind tunnel; obtaining across-wind aerodynamic force through spatial integration of wind pressure on rigid models; obtaining generalized aerodynamic force directly from measuring base bending moment using high frequency force balance technique. Identificatio

35、n of across-wind aerodynamic force from dynamic responses of aero elastic building model. This method employs across-wind dynamic responses of the aero elastic building model, combining the dynamic characteristics of the model to identify across-wind aerodynamic force. Melbourne and Cheung performed

36、 aero elastic model wind tunnel tests on a series of circular, square, hexagon, polygon with eight angles, square with reentrant angles and fillets, and tall or cylindrical structures with sections contracting along height. However, further studies showed that across-wind aerodynamic damping force a

37、nd aerodynamic force mixed together make it difficult to extract aerodynamic damping force accurately. As such, the method has been seldom used. Wind pressure integration method. Researchers have recommended wind pressure integration to obtain more accurately the across-wind aerodynamic forces on ta

38、ll buildings. Islam et al . adopted this method to obtain across-wind aerodynamic forces on tall buildings and structures. Cheng et al. experimentally studied across-wind aerodynamic forces of typical buildings under different wind field conditions and derived empirical formulas for the power spectr

39、um density of the across-wind aerodynamic force reflecting the effects of turbulent intensity and turbulent scale. Turbulent intensity was found to widen the bandwidth of PSD of the across-wind aerodynamic force and reduce the peak value. However, turbulent intensity was determined to have almost no

40、 effects on total energy. Thus, researchers have recognized the quantitative rules of variation of across-wind aerodynamic force with wind condition to some extent. Liang et al. examined across-wind aerodynamic forces on typical rectangular buildings in a boundary layer wind tunnel using this method

41、, thus proposing empirical formulas for PSD of across-wind aerodynamic forces of tall rectangular buildings and an analytical model for across-wind dynamic responses. Ye and Zhang decomposed across-wind turbulence excitation and vortex shedding excitation in across-wind aerodynamic forces on typical

42、 super-tall buildings. The results showed that the across-wind turbulence contributed much less to across-wind aerodynamic force than the wake excitation. Based on a large number of results, we derived PSD formulas for the across-wind turbulence excitation and the wake excitation, and further derive

43、d a new formula for the across-wind aerodynamic force. The first- and higher-mode generalized across-wind aerodynamic forces can be calculated through the integration of pressure distribution on rigid building models, which is an important advantage of this method. However, given the need for a larg

44、e number of pressure taps for very large-scale structures in this kind of method, synchronous pressure measurements are difficult to make. Moreover, for buildings and structures with complex configurations, accurate wind pressure distribution and aerodynamic force are difficult to obtain using this

45、kind of method. High frequency force balance technique. Compared with the pressure measuring technique, high frequency force balance technique has its unique advantage for obtaining total aerodynamic forces. The test and data analysis procedures are both very simple; hence, this technique is commonl

46、y used for selection studies on architectural appearance in the initial design stage of super-tall buildings and structures. Currently, this technique is widely used for total wind loads acting on super-tall buildings and structures, and for dynamic response computation as well. The high frequency f

47、orce balance technique has been gradually developed since the 1970s. Cermak et al. were the first to use this technique for building model measurement. They initially pointed out that the balance-model system should have a higher inherent frequency than the concerned frequency of wind forces. The fi

48、ve-component balance developed by Tschanz and Davenport marked the maturity of balance facility. Kareem conducted an experimental study on across-wind aerodynamic forces on tall buildings with various section shapes in urban and suburban wind co research showed that for the buildings with , uncertainties of wind and structural parameters have small effects on PSD of the across-wind aerodynamic force, and the correlation between the along-wind aerodynamic force and the across-wind aerodynamic force or t

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922