ImageVerifierCode 换一换
格式:DOC , 页数:33 ,大小:447.59KB ,
资源ID:837284      下载积分:20 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 微信支付   
验证码:   换一换

加入VIP,免费下载资源
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.wodocx.com/d-837284.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于粒子群算法的控制系统PID参数优化设计.doc)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(发送邮件至2622162128@qq.com或直接QQ联系客服),我们立即给予删除!

基于粒子群算法的控制系统PID参数优化设计.doc

1、基于粒子群算法的控制系统PID参数优化设计摘 要本文主要研究基于粒子群算法控制系统PID参数优化设计方法以及对PID控制的改进。PID参数的寻优方法有很多种,各种方法的都有各自的特点,应按实际的系统特点选择适当的方法。本文采用粒子群算法进行参数优化,主要做了如下工作:其一,选择控制系统的目标函数,本控制系统选用时间乘以误差的绝对值,通过对控制系统的逐步仿真,对结果进行分析。由于选取的这个目标函数的解析式不能直接写出,故采用逐步仿真来实现;其二,本文先采用工程上的整定方法(临界比例度法)粗略的确定其初始的三个参数,再利用粒子群算法进行寻优,得到更好的PID参数;其三,采用SIMULINK的仿真工

2、具对PID参数优化系统进行仿真,得出系统的响应曲线。从中发现它的性能指标,都比原来有了很大的改进。因此,采用粒子群算法的优越性是显而易见的。关键词 目标函数;PID参数;粒子群算法;优化设计;SIMULINKOptimal design of PID parameter of the control system based on Particle Swarm OptimizationAbstractThe main purpose of this paper is to study the optimal design of PID parameter of the control syst

3、em based on Particle Swarm Optimization and find a way to improve the PID control. There are a lot of methods of optimization for the parameters of PID, and each of them has its own characteristics. The proper methods need to be selected according to the actual characteristics of the system. In this

4、 paper we adopt the Particle Swarm Optimization to tune the parameters. To finish it, the following tasks should be done. First, select the target function of the control system. The target function of the control system should be chosen as the absolute value of the error multiplied by time. Then we

5、 simulate the control system gradually, and analyze the results of the process. Because the solution of the target function cannot be worked out directly, this design adopts simulation gradually. Second, this paper adopts the engineering method (the critical ratio method) to determine its initial pa

6、rameters , then uses the Particle Swarm Optimization to get a series better PID parameters. Third, this paper uses the tool of SIMULINK to optimize the parameters of PID and gets the response curve of the system. By contrast with the two response curves, it is clearly that the performance has improv

7、ed a lot than the former one. Therefore, it is obviously to find the advantages in using the Particle Swarm Optimization.Keywords: target function; PID parameters; Particle Swarm Optimization; optimal design; SI MULINK目 录1 绪论11.1 研究背景和课题意义11.2 基本的PID参数优化方法11.3 常用的整定方法21.4 本文的主要工作42 粒子群算法的介绍52.1 粒子法思

8、想的起源52.2 算法原理52.3 算法流程62.4 全局模型与局部模型72.5 算法特点82.6 带惯性权重的粒子群算法82.7 粒子群算法的研究现状93 用粒子群方法优化PID参数103.1 PID控制原理103.2 PID控制的特点113.3 优化设计简介113.4 目标函数选取123.5 大迟滞系统133.6 加热炉温度控制简介163.7 加热炉系统的重要特点163.8 加热炉的模型结构174 系统仿真研究194.1 工程上的参数整定194.2 粒子群算法参数整定204.3 结果比较214.4 P、I、D参数对系统性能影响的研究224.5 Smith预估补偿器24结 论26致 谢27参

9、考文献28附 录291 绪论1.1 研究背景和课题意义在现代工业控制领域,PID控制器由于其结构简单、鲁棒性好、可靠性高等优点得到了广泛应用。PID的控制性能与控制器参数的优化整定直接相关。在工业控制过程中,多数控制对象是高阶、时滞、非线性的,所以对PID控制器的参数整定是较为困难的。优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题。为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、神经算法和遗传算法等。优化问题有两个主要问题。一是要求寻找全局最小点,二是要求有较高的收敛速度。爬山法精度较高,但是易于陷入局部极小。遗传算法、神经网络算法等也还存在某些不

10、足,前者要涉及到繁琐的编码解码过程和很大的计算量,后者的编程和解码过程需要大量CPU时间,算法易早熟,收敛易陷入局部最优,往往不能同时满足控制系统的速度和精度,且隐含层数目、神经元个数以及初始权值等参数选择都没有系统的方法。1.2 基本的PID参数优化方法目前PID参数整定优化方法有很多,比如单纯形法、最速下降法、误差积分准则ISTE最优设定方法、遗传算法、蚁群算法等。单纯形法是一种求解多变量无约束最优化问题的直接搜索法,是求解非线性函数的无约束极值的一种经验方法;最速下降法是一种以梯度法为基础的多维无约束最优化问题的数值计算法,它的基本思想是选取目标函数的负梯度方法(最速下降方向)作为每步迭

11、代的搜索方向,逐步逼近函数的极小值点;误差积分准则ISTE最优设定方法是针对一类特定被控对象的,如果被控对象形式已知,可以考虑使用这种ISTE误差积分准则作为目标函数进行参数优化;遗传算法借鉴了自然界优胜劣汰的进化思想,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解的方法。其基本思想是:先初始化一个种群(种群是由经过基因编码的一定数目的个体组成的,每个个体代表所求问题的一种解决方案),然后按照生物进化理论中的适者生存和优胜劣汰的原理,逐代演化产生出越来越好的个体。在每一代,根据个体的适应度大小挑选出较好的个体,并借助于自然遗传学的遗传算子进

12、行组合交叉和变异,产生出代表新的解集的种群。经过数代的演化,将使得最终的种群更加适应环境,种群中的个体更加优质,把最后种群中的最优个体经过解码后作为问题的近似最优解;蚁群算法是受到自然界中真实蚁群集体行为的研究成果的启发而提出的基于种群的模拟进化算法。蚂蚁从蚁巢出发寻找食物源,找到食物后在从食物源原路返回蚁巢的路上释放信息素,觅食的蚂蚁会跟随这个信息素踪迹找到食物源。信息素按照一定的比例释放的。路径越短,释放的信息素越多,浓度也越高;而信息素浓度越高,吸引的蚂蚁也越多;吸引的蚂蚁越多,遗留下的信息素也越多。最后所有的蚂蚁都集中到信息素浓度最高的一条路径上,这条路径就是从蚁巢到食物源的最短路径。

13、为解决最优化问题人们提出过许多新技术和新方法,但工业和科学领域大量实际问题的困难程度正在日益增长,它们大多是根本无法在可接受的时间内找到解的问题。这类优化问题的困难性不仅体现在具有极大的规模,更为重要的是,它们多数是非线性的、动态的、多峰的、具有欺骗性的或者不具有任何导数信息。因此,发展通用性更强、效率更高的优化算法总是需要的。1.3 常用的整定方法 这里列举在过程控制系统中常用的参数整定方法:经验法、衰减曲线法、临界比例度法、反应曲线法。用衰减曲线法整定调节器参数的方法是:在纯比例作用下,为,为0,目的是要得到,衰减振荡过度过程曲线。根据所得曲线,若衰减大于 应调整朝小比例带方向;若小于,应

14、调整朝大比例带方向。记下的比例带,并在记录曲线上求得衰减时的调节周期,然后计算,各值。临界比例度法考虑的实质是通过现场试验找到等幅振荡的过渡过程,得到临界比例度和等幅振荡周期。当操纵变量作阶跃变化时,被控变量随时间变化的曲线称为反应曲线。对有自衡的非振荡过程,广义对象传递函数常可用近似。K,和T可用图解法等得出。调节器参数整定的反应曲线是依据广义对象的K,和T确定调节器参数的方法。在这些指标中,不同的系统有不同的侧重:强调快速跟踪的系统要求调节时间尽可能短些,强调稳定平稳的系统则要求超调量小,但基本上都要保证系统稳定收敛,即衰减比大于1,超调量必须在允许值的范围内,另外余差尽可能小至最后为零。

15、影响控制系统指标的因素除了对象的时间常数、放大系数及滞后常数外,还有调节器的参数整定情况。调节器的参数整定是一个复杂的问题,这是因为这些参数的整定要考虑控制对象的各种特性,以及一些会影响系统运行过程的未知干扰;而且,调节器参数本身的调整也会对系统的特性产生重大影响1-3。调节器的各参数对控制指标的具体影响主要体现在:比例带:比例带越小,上升时间减小,衰减比S减小,稳定度下降。在工程上,比例带d常用比例度P来描述。微分作用:微分作用的大小由微分时间来决定。越大,越能克服系统的容量滞后和测量滞后,对缩短调节时间有一定作用。积分作用:积分作用通过积分时间来体现。越小,消除余差越快,稳定度下降,振荡频

16、率变高。要实现PID参数的自整定,首先要对被控制的对象有一个了解,然后选择相应的参数计算方法完成控制器参数的设计。据此,可将PID参数自整定分成两大类:辨识法和规则法。基于辨识法的PID参数自整定,被控对象的特性通过对被控对象数学模型的分析来得到,在对象数学模型的基础上用基于模型的一类整定法计算PID参数。基于规则的PID参数自整定,则是运用系统临界点信息或系统响应曲线上的一些特征值来表征对象特性,控制器参数由基于规则的整定法得到4。尽管当今出现了许多高级控制方法,但是实际控制系统仍然是以比例积分微分(PID) 控制为主,即使已经有了一些行之有效的整定规则,但是手动整定PID控制器参数仍是一件

17、复杂和费时的工作。因此出现了许多自整定算法5。无论那种整定方法,都不是万能的,它们各有长处和不足,都有一定的适应范围。为了提高传统PID整定技术的适应能力,好多新的方法,如遗传算法,模糊逻辑控制等在最近几年里获得了很快的发展,并广泛地应用于PID控制器参数整定中6。每种控制方法都有各自的优点以及适用范围,在实际的操作中不同的方法来实现同一控制模型,其精确度也会有差别。在工程实践中,总希望所选的方案是一切可能的方案中最优的方案,这就是最优控制的问题。解决最优控制的数学方法称为最优化方法,近几十年来,它已经是一门迅速发展的学科。在自动控制方面,将优化技术用于系统设计,能使设计出来的控制系统在满足一

18、定的约束条件下,达到某种性能指标的函数为最小(或最大),这就是控制系统的最优化问题。1.4 本文的主要工作本文采用粒子群算法对PID参数进行寻优。先选择控制系统的目标函数,本控制系统选用时间乘以误差的绝对值,通过对控制系统的逐步仿真,对结果进行分析。由于选取的这个目标函数的解析式不能直接写出,故采用逐步仿真来实现,然后采用工程上的整定方法(临界比例度法)粗略的确定其初始的三个参数,并以此进行寻优,得到较好的PID参数。再利用MATLAB编制粒子群算法寻优程序。通过粒子群算法优化系统性能最佳的PID参数后采用SIMULINK的仿真工具对PID参数优化系统进行仿真,得出系统的响应曲线。从中发现它的

19、性能指标,都比原来的曲线有了很大的改进。2 粒子群算法的介绍2.1 粒子群算法思想的起源自然界中各种生物体均具有一定的群体行为,而人工生命的主要研究领域之一是探索自然界生物的群体行为,从而在计算机上构建其群体模型。自然界中的鸟群和鱼群的群体行为一直是科学家的研究兴趣,生物学家Craig Reynolds在1987年提出了一个非常有影响的鸟群聚集模型7,在他的仿真中,每一个个体遵循:(1)避免与邻域个体相冲撞。(2)匹配邻域个体的速度。(3)飞向鸟群中心,且整个群体飞向目标。仿真中仅利用上面三条简单的规则,就可以非常接近的模拟出鸟群飞行的现象。1990年,生物学家Frank Heppner也提出

20、了鸟类模型8,它的不同之处在于:鸟类被吸引飞到栖息地。在仿真中,一开始每一只鸟都没有特定的飞行目标,只是使用简单的规则确定自己的飞行方向和飞行速度(每一只鸟都试图留在鸟群中而又不相互碰撞),当有一只鸟飞到栖息地时,它周围的鸟也会跟着飞向栖息地,这样,整个鸟群都会落在栖息地。1995年,美国社会心理学家James Kennedy和电气工程师Russell Eberhart共同提出了粒子群算法,其基本思想是受对鸟类群体行为进行建模与仿真的研究结果的启发。他们的模型和仿真算法主要对Frank Heppner的模型进行了修正,以使粒子飞向解空间并在最好解处降落。Kennedy在他的书中描述了粒子群算法

21、思想的起源:自20世纪30年代以来,社会心理学的发展揭示:我们都是鱼群或鸟群聚集行为的遵循者。在人们的不断交互过程中,由于相互的影响和模仿,他们总会变得更相似,结果就形成了规范和文明。人类的自然行为和鱼群及鸟群并不类似,而人类在高维认知空间中的思维轨迹却与之非常类似。思维背后的社会现象远比鱼群和鸟群聚集过程中的优美动作复杂的多:首先,思维发生在信念空间,其维数远远高于3;其次,当两种思想在认知空间会聚于同一点时,我们称其一致,而不是发生冲突。2.2 算法原理在一个D维的目标搜索空间中,有n个微粒组成一个粒子群,其中每个微粒是一个D维的向量,它的空间位置表示为xi =(xi1,xi2,xiD),

22、i=1,2,n。微粒的空间位置是目标优化问题中的一个解,将它代入适应度函数可以计算出适应度值,根据适应度值的大小衡量微粒的优劣;第i个微粒的飞行速度也是一个D维的向量,记为vi=(vi1,vi2,viD);第i个微粒所经历过的具有最好适应值的位置称为个体历史最好位置,记为pi=(pi1,pi2,piD);整个微粒群所经历过的最好位置称为全局历史最好位置,记为pg=(pg1,pg2,pgD),粒子群的进化方程可描述为: (2.1) (2.2)其中:下标j表示微粒的第j维,下标i表示微粒i,t表示第t代,c1,c2为加速常量,通常在(0,2)间取值,r1 U(0,1),r2 U(0,1)为两个相互

23、独立的随机函数。从上述微粒进化方程可以看出,c1调节微粒飞向自身最好位置方向的步长,c2调节微粒向全局最好位置飞行的步长。通过分析基本粒子群的一些特点,可以知道式(2.1)中其第一部分为微粒先前的速度;其第二部分为“认知”部分,表示微粒本身的思考;其第三部分为“社会”部分,表示微粒间的社会信息共享。目前,虽然模型的社会部分和认知部分的相对重要性还没有从理论上给出结论,但有一些研究已经表明对一些问题,模型的社会部分显得对认知部分更重要。2.3 算法流程基本粒子群算法的流程如下:(1)初始化粒子群,随机初始化各粒子。(2)根据适应度函数计算各粒子的适应度值。(3)对每个粒子,将它的适应度值与它的历

24、史最优的适应度值比较,如果更好,则将其作为历史最优。(4)对每个粒子,比较它的适应度值和群体所经历的最好位置的适应度值,如果更好,则将其作为群最优。(5)根据方程(2.1)和方程(2.2)对粒子的速度和位置进行进化。(6)如果达到结束条件(足够好的解或最大迭代次数),则结束,否则转步骤(2)。粒子群优化算法的流程如图2.1所示输出结果根据方程(2.2)对粒子的位置进行进化根据方程(2.1)对粒子的速度进行进化求出整个群体的全局最优值求出每个粒子的个体最优计算每个粒子的适应值初始化每个粒子的速度和位置是否满足结束条件是否开 始图2.1 基本粒子群算法流程图2.4 全局模型与局部模型在2.2描述的

25、算法中,粒子的行为是受自身最优pbest和全局最优gbest的影响,这种版本称为全局版本PSO算法,如图2.2所示。另一种为局部版本PSO算法,在该算法中,粒子的行为是不受全局最优gbest影响的,而是受自身最优pbest和拓扑结构中邻近粒子中的局部最优lbest影响的,如图2.3所示。对局部版本,式(2.1)改为: (2.3)其中,pij为邻近粒子的局部最优。比较两种版本的算法,我们可以发现:因为全局版本PSO算法中所有粒子信息是共享的,所以算法收敛到全局最优的速度比局部版本PSO算法快。但全局PSO算法易陷入局部最优;局部PSO算法允许粒子与邻近粒子比较,相互施加影响,虽然算法收敛速度慢,

26、但不易陷入局部最优。 图2.2 gbest模型 图2.3 lbest模型2.5 算法特点粒子群算法具有以下主要优点: 易于描述 设置参数少 容易实现 收敛速度快粒子群算法很容易实现,计算代价低且占用计算机硬件资源少。粒子群算法已被证明能很好地解决许多全局优化问题。当然,PSO算法也和其它全局优化算法一样,有易陷入局部最优,收敛精度不高,后期收敛速度慢等缺点。2.6 带惯性权重的粒子群算法探索是偏离原来的寻优轨迹去寻找一个更好的解,探索能力是一个算法的全局搜索能力。开发是利用一个好的解,继续原来的寻优轨迹去搜索更好的解,它是算法的局部搜索能力。如何确定局部搜索能力和全局搜索能力的比例,对一个问题

27、的求解过程很重要。1998年,Yuhui Shi9提出了带有惯性权重的改进粒子群算法。其进化过程为: (2.4) (2.5)在式(2.1)中,第一部分表示粒子先前的速度,用于保证算法的全局收敛性能;第二部分、第三部分则是使算法具有局部收敛能力。可以看出,式(2.4)中惯性权重w表示在多大程度上保留原来的速度。w较大,全局收敛能力强,局部收敛能力弱;w较小,局部收敛能力强,全局收敛能力弱。当w=1时,式(2.4)与式(2.1)完全一样,表明带惯性权重的粒子群算法是基本粒子群算法的扩展。实验结果表明,w在0.8,1.2之间时,PSO算法有更快的收敛速度,而当w1.2时,算法则易陷入局部极值。2.7

28、 粒子群算法的研究现状在算法的理论研究方面。目前PSO算法还没有成熟的理论分析,少部分研究者对算法的收敛性进行了分析,大部分研究者在算法的结构和性能改善方面进行研究,包括参数分析,拓扑结构,粒子多样性保持,算法融合和性能比较等。PSO由于有简单、易于实现、设置参数少、无需梯度信息等特点,其在连续非线性优化问题和组合优化问题中都表现出良好的效果。3 用粒子群方法优化PID参数PID控制是最早发展起来的控制策略之一,是指将偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,对被控对象进行控制。随着计算机的普及,数字PID控制在生产过程中已成为一种最常用的控制方法,在机电、冶金、机械、化

29、工等诸多行业中获得了广泛的应用。3.1 PID控制原理图3.1给出PID控制系统的原理框图,该控制系统由模拟PID控制器和被控对象组成。比例积分微分被控对象r(t)e(t)u(t)y(t)+图3.1 PID控制系统原理框图PID控制是一种线性控制器,它根据给定值r(t)与实际输出值y(t)构成控制偏差: (3.1)PID的控制规律为: (3.2)或写成传递函数的形式: (3.3)其中,为比例系数,为积分时间常数,为微分时间常数。PID控制器中的各个校正环节的作用如下:1、比例环节:成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用,以减小偏差;2、积分环节:主要用于消

30、除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数凡,凡越大,积分作用越强,反之则越弱;3、微分环节:反映偏差信号的变化趋势(变化速率),并能在误差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。3.2 PID控制的特点PID控制器原理简单、鲁棒性好、可靠性高,因此一直是工业过程控制中应用最广的策略,尤其适用于可建立精确数学模型的确定性系统。但是实际工业生产过程往往具有非线性、时变不确定性等困难性,难以建立精确的数学模型,应用常规PID控制器不能达到理想的控制效果。此外,在实际生产的现场中,常规PID控制器往往会受到参数整定过程繁杂的困扰,出

31、现整定不良、性能欠佳的情况,对运行工况的适应性也很差。3.3 优化设计简介所谓优化设计就是一种对问题寻优的过程,人们所从事的任何工作都希望尽可能做好,以期得到一个理想的目标。在日常的设计过程中,常常需要根据产品设计的要求,合理地确定各种参数,以达到最佳的设计目标。实际上,在任何一项设计工作中都包含着寻优过程,但这种寻优在很大程度上带有经验性,多根据人们的直觉、经验及不断试验而实现的,由于受到经验、时间、环境等条件的限制,往往难以得到最佳的结果。优化设计是20世纪60年代发展起来的一门新的学科,它是最优化技术和计算机技术在设计领域应用的结果。优化设计为工程设计提供了一种重要的科学设计方法,在解决

32、复杂设计问题时,它能从众多的设计方案中找到尽可能完善的设计方案。要实现问题的优化必须具备两个条件,一是存在一个优化目标;另一是具有多个方案可供选择。工程设计问题的最优化,可以表达为一组优选的设计参数,在满足一系列限制条件下,使设计指标达到最优。因而,优化设计的数学模型可由设计变量、目标函数和设计约束条件三部分组成。(1) 设计变量:在工程设计中,为区别不同的设计方案,通常是以被称为设计变量的不同参数来表示。(2) 目标函数:每一个设计问题,都有一个或多个设计中所追求的目标,它们可以用设计变量的函数来表示,被称为目标函。(3) 设计约束:优化设计不仅要使所选择方案的设计指标达到最佳值,同时还必须

33、满足一些附加的设计条件,这些附加设计条件都构成对设计变量取值的限制,在优化设计中被称为设计约束。工程设计中的优化方法有多种类型,有不同的分类方法。若按设计变量数值的不同,可将优化设计分为单变量(一维)优化和多变量优化;若按约束条件的不同,可分为无约束优化和有约束优化;若按目标函数数量的不同,又有单目标优化和多目标优化10。3.4 目标函数选取在参数最优化的问题中要涉及性能指标函数,性能指标函数是被寻参数的函数,称为目标函数。选择不同的目标函数的出发点是使它即能比较明确的反映系统的品质,又便于计算。当然选择不同的目标函数,即使对于同一系统,寻优最后得到的优化参数也是会有所不同的。目标函数的选择分

34、为两大类:第一类是特征型目标函数,它是按照系统的输出响应的特征提出的。第二类是误差型目标函数,它是采用期望响应和实际响应之差的某个函数作为目标函数。这种目标函数实际上是对第一类目标函数的几个特征向量做数学分析,把它们包含在一个目标函数的表达式中。因此它反映整个系统的性能。几种常用的误差型目标函数:(1)误差平方的积分型。这种目标函数的表达式为 (3.4)其中e(t)=r(t)-y(t)表示系统误差。一般要求e(t)越小越好,即要求控制系统的输出响应y(t)尽可能的接近输入r(t)。由于在过度过程中e(t)时正时负,故取误差的平方进行积分。这种目标函数在数学上是很容易实现的,常常可以得到比较简单

35、的解析式。但是在过度过程中,不同时期的误差是不完全相同的,如果全部用误差的平方再积分显然是不怎么合理的,不能很好的反映系统的最终品质指标的要求。(2)时间乘以平方误差型。这种目标函数的表达式为 (3.5)由于在误差平方上乘以了t,相当加上了时间权。这样过度过程的初始误差考虑比较少,而着重权衡过度过程中后期出现的误差。这种目标函数的选取不止一种方法可以更精确地反映系统的最终品质要求。(3)误差绝对值积分型。这种目标函数的表达式为 或者为 (3.6)其寻优方法显然要比其他两种方法优点突出。一方面加了绝对值,它克服了在过度过程中e(t)时正时负的缺点,另外加了时间t,这样过度过程中后期出现的误差也基

36、本上能消除。因此本文在选择目标函数的表达式取。3.5 大迟滞系统 在生产过程中,被控制对象除了具有容积延迟外,往往有不同程度的纯迟滞。例如在交换器中,被测量是被加热物料的出口温度,而控制量是载热介质,当改变载热介质流量后,对物料的出口温度必然有一个迟滞的时间,即介质经过管道的时间。此外,如反应器,管道混合,皮带传输,多容量,多个设备串联以及用分析仪表测量流体成分过程等等都存在着比较大的滞后。在这些过程中,由于纯滞后的存在,使得被调量不能及时反映系统所受的扰动,即使测量信号达到调节器,调节机关接受调节信号后立即动作,也需要经过纯滞后时间以后,才波及被调量,使之受到控制。因此,这样的过程必然会产生

37、比较明显的超调量和较长的调节时间。所以具有纯滞后的系统认为是最难控制的系统。其控制难度将随着滞后时间占整个过程的时间动态的分配份额的增加而增加。一般认为纯滞后的时间与过程时间常数T之比的值大于0.3,则说明该过程具有大滞后的工艺过程。当/T增加,过程中的相位滞后增加,使上述现象更为突出,有时甚至会因为超调量严重而出现聚爆,结焦等停产事故;有时则可能引起系统不稳定,被调量超出安全限,从而危及设备及人身安全。因此大迟滞系统一直被受人们的关注,成为重要的课题之一。 解决的方法很多,最简单的是利用常规调节器适应性强,调整方便的特点,经过仔细个别的调整,在控制要求不太苛刻的情况下,满足生产过程的要求。当

38、对系统进行特别调整后还不能获得满意的结果时,还可以在常规控制的基础上稍微加以改动。可以采用微分先行的控制方案,即将微分作用移动到反馈前面,以加强微分作用,达到减小超调量的目的。在大迟滞系统中采用的补偿方法不同于前馈补偿,它是按照过程的特性设想的一种模型加入到反馈控制系统中,以补偿过程的动态特性。这种补偿反馈也因其构成模型的方法形成不同而有不同的方案。常用的有史密斯(Smith)预估补偿方法,当然还有一些改进过的史密斯(Smith)预估补偿方法,比如1977年甲而思和巴特利在史密斯方法的基础上提出了增益的自适应补偿方案。它们在模型匹配的条件下均可以获得比较好的效果。通过理论分析可以证明改进型方案

39、的稳定性优于未改进的史密斯方案,而且对模型精度的要求也有所降低,有利于改善系统的控制性能。尽管史密斯(Smith)预估补偿方案中多了一个调节器,其整定参数还是比较简单的。为了保证系统输出响应无残差,一般要求两个PID动作调节器。其中主调节器只需要按照模型完全精确的情况进行整定。至于辅助调节器的整定,只要在辅助调节器的反馈通道上与模型传递函数的模型相匹配即可。无论在设定值扰动或者负荷扰动下,史密斯(Smith)预估器对模型精度都是十分敏感的,另外改进型的方案有很好的适应能力。1959年由Smith率先提出了大滞后系统的预估补偿方案,其主要原理是预先估计出被控过程的动态模型,然后将预估器并联在被控

40、过程上,使其对过程中的纯滞后特性进行补偿,力图将被延迟的时间的被控量提前送入调节器,因而调节器能提前动作,这样就通过补偿装置消除了纯滞后特性在闭环中的影响。从而可明显地减少过程的超调量、缩短过渡过程时间,有效地改善控制品质,所以它是一种比较理想的大滞后系统控制方案。Smith预估补偿器方案原理如图3.2所示。+图3.2 Smith预估补偿器方案原理框图图中 PID调节器;广义被控对象的数学模型,为不包括纯滞后时间的对象模型;Smith预估补偿器。显然,在未进行Smith预估补偿情况下,系统闭环传递函数为 (3.7)故其闭环特征方程式为 =0 (3.8)由于在系统特征方程式中出现了纯时间滞后项,

41、这就在系统中引入了易造成不稳定的相角滞后,因此增加了系统的控制难度。引入Smith预估补偿器的目的,是使调节器所控制的等效对象中能消除纯滞后部分,即图3.2中应该满足如下关系 += (3.9)由此可得Smith预估补偿器的数学模型为 = (3.10)于是,图3.2所示之Smith预估补偿系统方框图可由图3.3表示。图3.3 Smith预估补偿系统一般型框图图3.3经方框图通过等效变换,可转为如图3.4所示的方框图。由图3.4显然可得等效Smith预估系统闭环传递函数为 (3.11)故闭环系统特征方程式为 =0 (3.12)图3.4 Smith等效预估补偿系统框图这就是Smith预估补偿的基本思

42、路,即从系统特征方程式中消除纯滞后因素,因而可消除过程纯滞后特性对系统稳定性的不利影响。3.6 加热炉温度控制简介在过程控制系统中,温度控制是一种常见的控制形式,本文主要通过加热炉温度控制的模型结构,来阐述最优控制,即用粒子群算法的思想,来对PID参数进行自整定。3.7 加热炉系统的重要特点在加热炉炉温控制过程中都会遇到纯滞后调节控制问题,因为加热炉的温度控制是一个典型的纯滞后工艺对象,炉温的滞后不仅仅浪费能源。而且影响加热产品质量与产量。随着计算机控制技术的发展与应用,许多加热炉都装备有先进的计算机控制系统,以实现加热炉的最佳燃烧控制。有的加热炉还配有二级计算机控制系统,以实现最佳炉温设定值

43、在线计算与设定11的都是降低能耗,减少污染,提高加热质量与产量。在实现了最佳燃烧控制与最佳炉温控制后,克服炉温惯性问题愈显重要。(1)纯滞后系统的特性纯滞后是物理系统的一种性质,具有纯滞后的工艺过程当外界对其施加了一定作用后,工艺过程不会立即做出反应,而总要滞后一段时间。对于加热炉来说,热容量愈大滞后时间愈长。在通常的反馈调节系统中,控制系统之所以能对控制对象施加一个校正作用,是因为工艺过程的输出有变化。但对具有纯滞后的工艺对象而言,控制系统对其施加校正作用后,工艺过程并不立即变化。因而也就不能立即对输入施加应有的作用。正因为如此,纯滞后被认为是最难控制的工艺过程。(2)加热炉炉温滞后的特点及

44、其克服加热炉炉温的滞后不同于通常的测量系统的滞后,一般的测量滞后是由于测量取样过程产生的,也有测量元件本身引起的滞后。对于测量系统产生的滞后可以用常规的滞后补偿系统进行校正,而加热炉温度滞后是加热炉固有的物理特性,是由于炉温变化速度低于燃料流量变化速度造成的,因此用常规的滞后补偿软件进行校正效果是不好的。在加热炉最佳温度控制系统中,配备了先进的计算机控制系统,建立了复杂的数学模型。当计算机给出了最佳炉温设定值后,由于炉温的滞后作用,实际炉温不会很快达到设定值,而总要围绕设定值上下波动延迟一段时间后才能达到设定值。使得最佳设定值变的不佳。如欲将炉温由900升到1000,当炉温达到设定值1000

45、后,由于其惯性作用,温度值会偏离设定值而升到1100。这是因为控制炉温是通过控制燃料流量间接控制的。当调节系统得到偏差信号后,燃料流量能够迅速响应偏关信号而改变流量的大小。但由于炉温信号的滞后,虽然燃料流量产生了变化,炉温并不立即变化。确切的说是炉温变化的速度跟不上。这样控制系统认为炉温偏差信号仍没有得到校正而进一步对燃料流量实施作用,其结果导致了较长时间的超调。这个超调量不仅仅浪费了能源,使得最佳燃烧控制系统的作用降低,更使得炉温调节的过渡过程时间大大延长。从上面的分析我们得知,造成炉温滞后的原因是炉温有了偏差后,控制炉温的燃料流量变化迅速,而温度要滞后一段时间才会改变。在滞后的这段时间内,温度偏差没有改变,因而控制系统的P、I.、D仍按原来的偏差继续改变燃料的流量。当炉温有反应时,燃料流量已超过了所需的设定值,从而引起燃料流量的浪费,造成炉温大幅度波动。3.8 加热炉的模型结构加热炉对象是一个自衡系统,即在其他条件不变,一定的燃油流量和助燃风量的作用下,炉出口温度和烟气中的氧体积分数是一定的。资料显示,在大多数情况下,自衡对象的动态特性都可以用一阶、一阶滞后、二阶、二阶滞后4种模型来描述。对加热炉测试的结果表明:燃油流量qm(s)及助燃风量挡板开度X(s)对炉出口温度T(s)及烟气中氧体积分数O2(s

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922