ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:231.55KB ,
资源ID:823878      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 微信支付   
验证码:   换一换

加入VIP,免费下载资源
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.wodocx.com/d-823878.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于混合PLC控制器的柔性制造系统英文翻译.doc)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(发送邮件至2622162128@qq.com或直接QQ联系客服),我们立即给予删除!

基于混合PLC控制器的柔性制造系统英文翻译.doc

1、毕业设计(论文)英文翻译Theoretical Computer Science 253 2009Developing a Hybrid Programmable Logic Controller Platform for a Flexible Manufacturing SystemHenning Dicrks University of Oldenburg Fachbereich Informatik P ostfach 2503 2900 Oldenburg. GermanyAbstract: In this article, we present the design and impl

2、ementation of a flexible manufacturing system (FMS) control platform based on a programmable logic controller (PLC) and a personal computer (PC)-based visual man-machine interface (MMI) and data acquisition (DAS) unit. The key aspect of an FMS is its flexibility to adapt to changes in a demanding pr

3、ocess operation. The PLC provides feasible solutions to FMS applications, using PC-based MMI/DAS, whereby PLCs are optimized for executing rapid sequential control strategies. PCs running MMI/DAS front-ends make intuitive operation interfaces, full of powerful graphics and reporting tools. Informati

4、on from the PC can be distributed through a companys local area network or web using client-server technologies. Currently, with the convergence of underlying microprocessor technology and software program-ming techniques, many users find that PLCs provide a cost-effective solution to real-time cont

5、rol in small- to medium-sized process plants, especially when combined with supervisory PCs using hybrid systems. The major work of this article demonstrates that PLCs are responsive to rapid and repetitious control tasks, using PCs that present the flow of information automation and accept operator

6、 instructions, thereby providing the user a tool to modify and monitor the process as the requirements change.Key Words: PLC、FMS、PC.1IntroductionEarly in the last century seventys introduction of flexible manufacturing system ( FMS ) is the product of manufacturing industry in the production of the

7、highest degree of automation. Since the flexible manufacturing system in the large scale production of highly efficient recognition, flexible manufacturing system are substantially growth ( Groover and Zimmers,1984). Manufacturing industry of global competition has led to the accelerated development

8、 of flexible manufacturing system. Flexible manufacturing system reduces the manufacturing cycle and reduce the cost of production.In general, a flexible manufacturing system composed of a group of machines or other automated workstation, form a modular system, such as CNC machine tools, robots, vis

9、ual system, and to a process station. These interrelated material handling systems are usually controlled by a computer drive ( Maleki,1991). Each modular system requires a separate modular control system, with individual unit controller for controlling the different components. All modular subsyste

10、ms as usual by computer control. The controller in than their more senior controller under the supervision of their respective operation work. In this system, both the control device or the flow of information must be automated. Flexible manufacturing system key function is able to adapt to changes

11、in the ability to control task. This flexibility includes it can produce parts quantity and diversity, and the running order, it can put some changes in the procedure to the corresponding flow path. Finally, the control platform should have the ability to make the data process automation.Typically,

12、there are three types of control platform for flexible manufacturing system: microcomputer, a micro processor and programmable logic controller ( Maleki,1991). The microcomputer is the most suitable for complex, large-scale, continuous, supervision control and other aspects of the application. The p

13、rogrammable logic controller is used for rapid and repeated logic control. Personal computer ( PC ) is suitable for the function of operation interface. Gradually, the development of PLCs will replace the relay, would create an industrial environment, more convenient plant engineers and repair perso

14、nnel changes, and keep the plant electrician. Now, with the microprocessor technology and software programming technology convergence, many users find the PLCs for small - to medium-sized program machine real-time control has a cost effective solution, especially when using mixed and management syst

15、em with personal computerGenerally, an FMS consists of a group of machines or other automated work stations, which form into modular subsystems, such as CNC machines, robots, vision systems, and a process station. These are interconnected by a materials handling system and usually driven by a comput

16、er(Maleki,1991).Each modular system requires an individual modular control system, with different components being controlled by individual controller units. All of the modular subsystems are controlled by computers as usual. These controllers perform their intended tasks under supervision of a high

17、er level controller. To the system, both the control devices as well as the flow of information need to be automated. The key aspect of an FMS is its ability to adapt to changes in the control tasks. This flexibility includes the quantities and varieties of part types which it can produce, the order

18、 in which operations may be performed, and its ability to reroute parts back into flow paths. In the end, the control platform should have the capability to automate the flow of information.Typically, there are three types of control platforms used in FMSs: minicomputers, microcomputers, and PLCs (M

19、aleki, 1991). The minicomputers are best suited for complex large-scale, continuous ,regulatory control applications . The PLCs are used for rapid and repetitious logic control. Personal computers (PCs) are suited for operator interface functions. Primarily, PLCs are designed to replace hardwiring r

20、elays, to operate in an industrial environment, to be easily modified by plant engineers and maintenance personnel, and to be maintained by plant electricians. Currently, with the convergence of underlying microprocessor technology and software programming, many users find that PLCs provide a cost-e

21、ffective solution to real-time control in small-to medium-sized process plants, especially when combined with supervisory PCs using hybrid systems.The purpose of this article is to address the state-of-the-art technology of FMSs. The design and construction of an FMS using PLC-controlled and PC-base

22、d visual man-machine interface(MMI) and data acquisition system(DAS) are presented. It is organized as follows. Section 2 begins with the description of the FMS on the factory floor of the Center for Manufacturing System sat the NewJersey Institute of Technology(NJIT).Section 3 shows the operational

23、 description of the FMS. Sections 4 and 5 present the applications of PLC-controlled and PC-based MMI/DAS for the FMS at NJIT. Section 6 contains a summary of the advantages of this PLC-controlled and PC-based MMI/DAS for FMS application.2. Description of the FMSSI handling conveyor systemThis consi

24、sts of four carts, A, B, C, and D, with fixtures mounted on each, two transfer tables,TT1 and TT2 , and dual conveyors which transport materials to each workstation.Figure 1. Flexible manufacturing system.NASA II CNC milling machineThe milling machine accepts rectangular solid blanks and machines ea

25、ch part of different types according to its computer controller.GE P50 robotA shared robot is used to load and unload the material between the CNC milling machine and the conveyor system, and between the parts presentation station and conveyor system. It contains five computer programs assignable by

26、 the PLC. The computer programs direct the robot to load the material between the parts presentation station and the carts and between the CNC machine and the carts. The last two programs place the completed parts in the accept or reject area.Parts presentation stationThis station includes a gravity

27、-chute, which supplies rectangular solid blanks as raw materials. This station also contains two bin types, one each for accepted parts and rejected parts.Computer vision systemThe vision system provides for the visual automated inspection of the parts. It is a menu-driven, 64-level gray scale, edge

28、 detection system.Drilling machineAn IBM7535 industrial robot with an automated drill as an end-effector drills various holes in the parts as directed.In summary, the FMS has two robots, one CNC mill, a material transfer convey or system including transportation carts and positioning limit switches,

29、 and a vision system, which are supervised by a GE-Series Six PLC and monitored by a PC-based visual MMI/DAS.3. Operational descriptionThe working cycle for this FMS proceeds in the following manner:1.Initially, all four carts on the conveyor system are empty and available for the raw materials to b

30、e loaded onto them from the parts presentation station.2.The GE robot loads four parts, one by one, on to the four carts on the convey or system. The carts move clock wise as they are being loaded.3. Figure 2 shows the positions acquired by the four carts once the four parts of different types have

31、been loaded.4. The IBM robot drills various holes on each blank part as the cart stops at the drilling machine.5. The GE robot moves to the conveyor, removes the part from the cart at position X1,and loads it into the fixture located on the CNC machine table.6. Once the part is loaded on the CNC mil

32、ling machine, the robot retracts, and the milling machine mills the rectangular part as required.7. After the milling operation, the robot arm moves to the milling machine to remove the part that was machined from the holding fixture.Figure 2. Loading state of the conveyor system.8. The robot return

33、s the finished part to the same cart on the conveyor.9. A signal is sent to the vision camera to inspect the part.10. The vision system analyzes the part and outputs a signal that directs the robot to accept or reject the part.11. The robot runs either an accept program to place the part in the acce

34、pt bin or runs a reject program to place the part in the reject bin.12. The GE robot goes to the parts presentation station and loads a new blank part into the cart.13. The cart is released to the system and the next cycle is started.4. Control of an FMS with a PLCThe significant features of the FMS

35、 control system are as follows:1.The system is easy to configure and to modify to accommodate changes and updates, because of the ladder logic capability of the system.2.In a similar manner, the system is easy to program and document.3.The system can be easily maintained, and troubleshooting is decr

36、eased because on-line diagnostics are provided to pinpoint problems and decrease maintenance.4.Naturally, the system is readily interfaced with the computer.The PLC is a general purpose industrial computer which is widely used in industrial process control. It is capable of storing instructions to i

37、mplement control functions such as sequencing, timing, counting, arithmetic, data manipulation, and communication to control industrial machines and processes. The PLC is chosen to perform an FMS control task based on the following features:1) good reliability;2) less space required and operates in

38、an industrial environment;3) easier to maintain by plant engineer or technician;4) can be reprogrammed if control requirements change;5) can communicate and network with other computers.In this application, a GE-Series Six PLC is equipped with a memory bank, and the I/O racks are loaded with the fol

39、lowing input and output interfaces: 120 VAC input modules with 8 ports/module, 24 VDC input modules with 8 ports/module, and 120 VAC output modules with 8 ports/module.The application of FMS as follows:Using this platform, you can use the network to store recorded audio, video, can also be shared da

40、ta object, and these can be audio, video and a shared data object to a plurality of client, to achieve synchronous sharing. The platform integrates communication function and the function of the application program, it is through the Flash Player ( Flash player6 or higher ) in the client to provide

41、audio sharing, video sharing and data flow.FMS is a purely based on software environment for multimedia real-time communication environment, representing the current real-time communication in the field of development direction, and also its own, blending a lot of new features, are used to create th

42、e next generation communications applications.In short, Adobe FMS is a multimedia application platform, on this platform, can realize the multimedia streaming VOD, streaming, interaction and other applications, because Adobe company in network multimedia application on strength, as well as the Adobe

43、 Flash Player on the network wide application, therefore, FMS became a lot of multimedia application server end main application platform. Such as Youtube, Tudou etc.5. PC-based visual operator interface unitWith the convergence of microprocessor technology and software techniques, the PC has become

44、 very useful in operator interface applications. PCs running MMI/DAS front-ends make powerful, intuitive operation interfaces, full of useful graphics and reporting tools. Information from these PCs can be distributed through a companys local area network(LAN) or web using client-server technologies

45、.A PC-based visual MMI/DAS was developed to monitor the process and log data. The functions of the MMI are twofold. First, it opens a window between the operator and the process and then displays the process information on the CRT. It also allows the operator to modify the time delay constants or al

46、arm setpoints without changing the ladder logic, if the production requirements change. Second, it provides an automatic data logging device. It is capable of creating batch, shift, and day log reports. Information from the PC can be distributed through the local area network using client-server tec

47、hnologies. An application program has been developed by using an off-the-shelf state-of-the-art GENESIS for Windows PC-based software to provide the data from the PLC through a RS232 interface. This approach allows the PC to combine the controller, the programming terminal, the operator interface, a

48、nd the data acquisition system together in one unit. The PC-based MMI/DAS software provides an icon-based and mouse-driven open system for designing a real-time control strategy and dynamic operator displays. With the open architecture features, it provides support for user algorithms and LAN interf

49、acing.The other part of the MMI/DAS software is the enriched and user-friendly graphic builder. The graphic builder is an object-oriented CAD-based tool. The graphic tools allow the user to generate intuitive and useful man-machine interface screens to display the dynamic status of the FMS.6. ConclusionsThe particular FMS example is fully automated by a hybrid control platform using a PLC controlled and PC-based supervisory operator interface unit an

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922