1、一元二次方程测试六 一、 选择题(每小题3分,共30分)1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5 B、(x-p)2=9C、(x-p+2)2=9 D、(x-p+2)2=52、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )A、-1 B、0 C、1 D、23、若、是方程x2+2x-2005=0的两个实数根,则2+3+的值为( )A、2005 B、2003 C、-2005 D、40104、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )A、k- B、k-且k0C、k- D、k-
2、且k05、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )A、 x2+3x-2=0 B、x2-3x+2=0C、x2-2x+3=0 D、x2+3x+2=06、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )A、-2 B、-1 C、0 D、17、某城2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )A、300(1+x)=363 B、300(1+x)2=363C、300(1+2x)=363 D、363(1-x)2=3008、甲、
3、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+和2-,则原方程是( )A、 x2+4x-15=0 B、x2-4x+15=0C、x2+4x+15=0 D、x2-4x-15=09、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为( )A、2 B、0 C、-1 D、10、已知直角三角形x、y两边的长满足|x2-4|+=0,则第三边长为( )A、 2或 B、或2C、或2 D、2或二、 填空题(每小题3分,共30分)11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是 .12、一元二次方程x2
4、-3x-2=0的解是 .13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 .14、等腰ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .15、2005年某市人均GDP约为2003年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为 cm.(精确到0.1cm)17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为
5、 m,竹竿长为 m.18、直角三角形的周长为2+,斜边上的中线为1,则此直角三角形的面积为 .19、如果方程3x2-ax+a-3=0只有一个正根,则的值是 .20、已知方程x2+3x+1=0的两个根为、,则+的值为 . 三、 解答题(共60分)21、解方程(每小题3分,共12分)(1)(x-5)2=16 (2)x2-4x+1=0(3)x3-2x2-3x=0 (4)x2+5x+3=022、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+2)(x2+2)=11,求a的值.23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0(1) 当m取何值时,
6、方程有两个实数根?(2) 为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根(1) 求k的取值范围(2) 如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.25、(8分)已知a、b、c分别是ABC中A、B、C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断ABC的形状.26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从
7、第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1) 现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2) 若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?一元二次方程单元测试题参考答案一、 选择题15 BCBCB 610 CBDAD 提示:3、是方程x2+2x-2005=0的根
8、,2+2=2005又+=-2 2+3+=2005-2=2003二、 填空题1115 4 25或16 10%1620 6.7 , 4 3提示:14、AB、AC的长是关于x的方程x2-10x+m=0的两根在等腰ABC中若BC=8,则AB=AC=5,m=25若AB、AC其中之一为8,另一边为2,则m=1620、=32-411=50 又+=-30,=10,0,0三、解答题21、(1)x=9或1(2)x=2(3)x=0或3或-1(4)22、解:依题意有:x1+x2=1-2a x1x2=a2又(x1+2)(x2+2)=11 x1x2+2(x1+x2)+4=11a2+2(1-2a)-7=0 a2-4a-5=
9、0a=5或-1又=(2a-1)2-4a2=1-4a0aa=5不合题意,舍去,a=-123、解:(1)当0时,方程有两个实数根-2(m+1)2-4m2=8m+40 m-(2)取m=0时,原方程可化为x2-2x=0,解之得x1=0,x2=224、解:(1)一元二次方程x2-4x+k=0有两个不相等的实数根=16-4k0 k4(2)当k=3时,解x2-4x+3=0,得x1=3,x2=1当x=3时,m= -,当x=1时,m=025、解:由于方程为一元二次方程,所以c-b0,即bc又原方程有两个相等的实数根,所以应有=0即4(b-a)2-4(c-b)(a-b)=0,(a-b)(a-c)=0,所以a=b或
10、a=c所以是ABC等腰三角形26、解:(1)1250(1-20%)=1000(m2)所以,该工程队第一天拆迁的面积为1000m2(2)设该工程队第二天,第三天每天的拆迁面积比前一天增长的百分数是x,则 1000(1+x)2=1440,解得x1=0.2=20%,x2=-2.2,(舍去),所以,该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数是20%.27、解:(1)设每千克应涨价x元,则(10+x)(500-20x)=6000解得x=5或x=10,为了使顾客得到实惠,所以x=5(2)设涨价x元时总利润为y,则y=(10+x)(500-20x)=-20x2+300x+5000=-20(x-7.5)2+6125当x=7.5时,取得最大值,最大值为6125答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。
Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1
陕公网安备 61072602000132号 违法和不良信息举报:0916-4228922