ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:348.50KB ,
资源ID:1153804      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 微信支付   
验证码:   换一换

加入VIP,免费下载资源
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.wodocx.com/d-1153804.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(短时傅里叶变换STFT.ppt)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(发送邮件至2622162128@qq.com或直接QQ联系客服),我们立即给予删除!

短时傅里叶变换STFT.ppt

1、短时傅里叶变换FT在信号处理中的局限性:用傅立叶变换提取信号的频谱需要利用信号的全部时域信息。傅立叶变换没有反映出随着时间的变化信号频率成分的变化情况。1.短时傅里叶变换简介提出与基本思想鉴于傅里叶变换的缺陷提出了窗函数的概念,提出一个灵活可变的时间-频率窗,使得在这个窗内能够体现频率的信息,这种信号分析方法称为时间-频率分析。而窗固定的时间-频率分析方法即为短时傅里叶变换。短时傅里叶变换(STFT,short-time Fourier transform)。其主要思想是将信号加窗,将加窗后的信号再进行傅里叶变换,加窗后使得变换为时间t附近的很小时间上的局部谱,窗函数可以根据t的位置变化在整个

2、时间轴上平移,利用窗函数可以得到任意位置附近的时间段频谱实现时间局域化。STFT定义:1946年,Gabor就提出了STFT,给定一信号,其STFT定义为:短时谱的特点:1)时变性:既是角频率的函数又是时间t的函数。2)周期性:是关于的周期函数,周期为2。窗函数窗函数 (1.1)公式涵义:在时域用窗函数去截信号,对截下来的局部信号作傅里叶变换,即在t时刻得该段信号的傅里叶变换,不断地移动t,也即不断地移动窗函数的中心位置,即可得到不同时刻的傅里叶变换,这些傅里叶变换的集合,即是 。STFT可以看成是用基函数 来代替傅里叶变换中的基函数。(1.1)式内积的结果即可实现对进行时频定位的功能。对 两

3、边做傅里叶变换,有 式中 和 是等效的频率变量 该式指出,对 在时域加窗 ,引导在频域对 加窗 。所以信号谱信号谱窗谱窗谱Parseval定理定理 窗函数的中心和半径:定义非平凡函数 称为一个窗函数,如果 也是属于 的,这个窗函数的中心定义为:半径定义为:这样我们可以认为函数 集中定义在以 为中心,为半径,长为 的区间 上,取此区间为的有效区间是合适的。对函数 其中心为 半径为 ,对 的Fourier变换 设其中心为 半径为 矩形 ,称为函数 的时-频窗。该窗的面积为 2.测不准定理 以Gabor函数为例,令Gabor数函为窗函数,已知Gabor函数的表达式如下:以Gabor函数为窗函数的ST

4、FT称为Gabor变换,其定义为则Gabor函数的中心和半径为:根据窗函数半径公式,可知道Gabor窗函数的半径为:因为窗的面积为 ,对于Gabor窗函数说 ,因为 为 的傅里叶变换,则对于Gabor函数就要求出 的傅里叶变换 ,再代入上式得出 ,则 经计算得 则有:可以证明,不论采用何种函数作为窗函数,其时间窗和频率窗宽度的乘积的最小值都是2,这就是测不准原理,此定理告诉我们,不可能在时间和频率两个空间同时以任意精度逼近被测信号,因此就必须在信号的分析上对时间或者频率的精度做取舍。当利用STFT时,若我们希望能得到好的时-频分辨率,或好的时-频定位,应选取时宽、带宽都比较窄的窗函数 ,遗憾的

5、是,由于受不定原理的限制,我们无法做到使同时为最小。当我们对信号作时-频分析时,一般,对快变的信号,我们希望它有好的时间分辨率以观察其快变部分(如尖脉冲等),即观察的时间宽度要小,受时宽-带宽积的影响,这样,对该信号频域的分辨率必定要下降。由于快变信号对应的是高频信号,因此对这一类信号,我们希望有好的时间分辨率,但同时就要降低高频的分辨率。反之,对慢变信号,由于它对应的是低频信号,所以我们希望在低频处有好的频率分辨率,但不可避免的要降低时域的分辨率。3.短时傅里叶变换缺陷短时傅里叶变换 窗口t1t2窗函数 的特点:随着 的变换,窗口在相空间不断平移;短时Fourier变换就是通过这些移动的窗口

6、来提取被变换函数的信息;函数族 确定的时频窗口只是随 发生平移,窗口的大小和形状固定不变.前面推导了测不准定理,知道STFT不具备自动调节能力 窗函数选定形状不会发生改变时频窗在时间轴频率轴方向上的宽度确定时频分辨率确定不随时间、频率的变化而变化 从上面的分析我知道,如果要改变分辨率,则需要重新选择窗函数。因为受到不确定准则的限制,时频窗的面积不小于2,故不能兼顾频率与时间分辨率的需求,这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率不能同时达到最优,我们对时间分辨率和频率分辨率只能取一个折中,一个提高了,另一个就必然要降低,反之亦然。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,对频率分辨率和时间分辨率的要求是要按照一定的规律变化的,但短时傅里叶变换的函数一旦选定时频分辨率是确定不随时间、频率的变化而变化。

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922