ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:84.01KB ,
资源ID:1126180      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 微信支付   
验证码:   换一换

加入VIP,免费下载资源
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.wodocx.com/d-1126180.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(实验五线性方程组的迭代法实验.doc)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(发送邮件至2622162128@qq.com或直接QQ联系客服),我们立即给予删除!

实验五线性方程组的迭代法实验.doc

1、实验五 线性方程组的迭代法实验一. 实验目的(1)深入理解线性方程组的迭代法的设计思想,学会利用系数矩阵的性质以保证迭代过程的收敛性,以及解决某些实际的线性方程组求解问题。(2)熟悉Matlab编程环境,利用Matlab解决具体的方程求根问题。二. 实验要求 建立Jacobi迭代公式、Gauss-Seidel迭代公式和超松弛迭代公式,用Matlab软件实现线性方程组求解的Jacobi迭代法、Gauss-Seidel迭代法和超松弛迭代法,并用实例在计算机上计算。三. 实验内容1. 实验题目 (1)分别利用Jacobi迭代和Gauss-Seidel迭代求解下列线性方程组,取,要求精度:(2)分别取

2、、1.05、1.1、1.25和1.8,用超松弛法求解上面的方程组,要求精度为。2. 设计思想 1.Jacobi迭代:Jacobi迭代的设计思想是将所给线性方程组逐步对角化,将一般形式的线性方程组的求解归结为对角方程组求解过程的重复。2.Gauss-Seidel迭代:Gauss-Seidel迭代的设计思想是将一般形式的线性方程组的求解过程归结为下三角方程组求解过程的重复。3.超松弛迭代:基于Gauss-Seidel迭代,对i=1,2,反复执行计算迭代公式,即为超松弛迭代。3. 对应程序1.Jacobi迭代:function x,k=Jacobimethod(A,b,x0,N,emg)%A是线性方

3、程组的左端矩阵,b是右端向量,x0是迭代初始值% N表示迭代次数上限,emg表示控制精度,k表示迭代次数,x是解n=length(A);x1=zeros(n,1);x2=zeros(n,1);x1=x0;k=0;r=max(abs(b-A*x1);while remg for i=1:n sum=0; for j=1:n if i=j sum=sum+A(i,j)*x1(j); end end x2(i)=(b(i)-sum)/A(i,i); end r=max(abs(x2-x1); x1=x2; k=k+1; if kN disp(迭代失败,返回); return; endendx=x1;

4、2.Gauss-Seidel迭代:function x,k=Gaussmethod(A,b,x0,N,emg)%A是线性方程组的左端矩阵,b是右端向量,x0是迭代初始值% N表示迭代次数上限,emg表示控制精度,k表示迭代次数,x是解n=length(A);x1=zeros(n,1);x2=zeros(n,1);x1=x0;r=max(abs(b-A*x1);k=0;while remg for i=1:n sum=0; for j=1:n if ji sum=sum+A(i,j)*x1(j); elseif jN disp(迭代失败,返回); return; endendx=x1;3.超松弛

5、(SOR)迭代:function x,k=SORmethod(A,b,x0,N,emg,w)%A是线性方程组的左端矩阵,b是右端向量,x0是迭代初始值% N表示迭代次数上限,emg表示控制精度,k表示迭代次数,x是解%w表示松弛因子n=length(A);x1=zeros(n,1);x2=zeros(n,1);x1=x0;r=max(abs(b-A*x1);k=0;while remg for i=1:n sum=0; for j=1:n if j=i sum=sum+A(i,j)*x1(j); elseif jN disp(迭代失败,返回); return; endendx=x1;4. 实验

6、结果1.Jacobi迭代:2.Gauss-Seidel迭代:3.超松弛(SOR)迭代:w=1:w=1.05:w=1.1:w=1.25:w=1.8:四. 实验体会在同等精度下,Gauss-Seidel迭代法比Jacobi迭代法收敛速度快。一般来说,Gauss-Seidel迭代法比Jacobi迭代法收敛要快,但有时反而比Jacobi迭代法要慢,而且Jacobi迭代法更易于优化。因此,两种方法各有优缺点,使用时要根据所需适当选取。当松弛因子为1时,超松弛迭代方法等同于Gauss-Seidel迭代法,这和理论推导完全相同。另外,超松弛迭代法的收敛速度完全取决于松弛因子的选取,一个适当的因子能大大提高收敛速度。.忽略此处.

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1 

陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922