1、第四章 统计数据的概括性度量41 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。 (2)根据定义公式计算四分位数。 (3)计算销售量的标准差。 (4)说明汽车销售量分布的特征。解: Statistics汽车销售数量 NValid10Missing0Mean9.60Median10.00Mode10Std. Deviation4.169Percentiles256.255010.007512.5042 随机抽取25个网络用户,得到他们的年龄数据如下: 单位:周岁191
2、52925242321382218302019191623272234244120311723要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄FrequencyPercentCumulative FrequencyCumulative PercentValid1514.014.01614.028.01714.0312.01814.0416.019312.0728.02028.0936.02114.01040.02228.01248.023312.01560.02428.01768.02514.01872.02714.01976.02914.02080.0
3、3014.02184.03114.02288.03414.02392.03814.02496.04114.025100.0Total25100.0从频数看出,众数Mo有两个:19、23;从累计频数看,中位数Me=23。(2)根据定义公式计算四分位数。Q1位置=25/4=6.25,因此Q1=19,Q3位置=325/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.752=26.5。(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(
4、5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。如需看清楚分布形态,需要进行分组。为分组情况下的直方图:为分组情况下的概率密度曲线:分组:1、确定组数: ,取k=62、确定组距:组距( 最大值 - 最小值) 组数=(41-15)6=4.3,取53、分组频数表网络用户的年龄 (Binned)FrequencyPercentCumulative FrequencyCumulative PercentValid= 1514.014.016 - 20832.0936.021 - 25936.01872.026 - 30312.02184.031 - 3528.0
5、2392.036 - 4014.02496.041+14.025100.0Total25100.0分组后的均值与方差:Mean23.3000Std. Deviation7.02377Variance49.333Skewness1.163Kurtosis1.302分组后的直方图:43 某银行为缩短顾客到银行办理业务等待的时间。准备采用两种排队方式进行试验:一种是所有颐客都进入一个等待队列:另种是顾客在三千业务窗口处列队3排等待。为比较哪种排队方式使顾客等待的时间更短两种排队方式各随机抽取9名顾客。得到第一种排队方式的平均等待时间为72分钟,标准差为197分钟。第二种排队方式的等待时间(单位:分钟
6、)如下:55 66 67 68 71 73 74 78 78要求:(1)画出第二种排队方式等待时间的茎叶图。 第二种排队方式的等待时间(单位:分钟) Stem-and-Leaf Plot Frequency Stem & Leaf 1.00 Extremes (=1, 则k+1, k-1令P(x=k+1)/P(x=k)1, 则-1若2, 则P(x=1)P(x=-1)P(x=-1+2), k=-1+1=是最大综上, 2时,k=(写成分段的形式,是取整符号)5.16 (1)0.6997 (2)0.55.17 173.9135.18 (1)0.9332 (2)0.383第六章 统计量及其抽样分布6.
7、1 调节一个装瓶机使其对每个瓶子的灌装量均值为盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差盎司的正态分布。随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。试确定样本均值偏离总体均值不超过0.3盎司的概率。解:总体方差知道的情况下,均值的抽样分布服从的正态分布,由正态分布,标准化得到标准正态分布:z=,因此,样本均值不超过总体均值的概率P为:=2-1,查标准正态分布表得=0.8159因此,=0.63186.2 =0.95 查表得: 因此n=436.3 ,表示从标准正态总体中随机抽取的容量,n=6的一个样本,试确定常数b,使得解:由于卡方分布是由标准正态分布的平方和构
8、成的:设Z1,Z2,Zn是来自总体N(0,1)的样本,则统计量服从自由度为n的2分布,记为2 2(n)因此,令,则,那么由概率,可知:b=,查概率表得:b=12.596.4 在习题6.1中,假定装瓶机对瓶子的灌装量服从方差的标准正态分布。假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差,确定一个合适的范围使得有较大的概率保证S2落入其中是有用的,试求b1,b2,使得解:更加样本方差的抽样分布知识可知,样本统计量: 此处,n=10,所以统计量根据卡方分布的可知:又因为:因此:则:查概率表:=3.325,=19.919,则=0.3
9、69,=1.88第七章 参数估计7.1 (1) =0.7906 (2) =1.54957.2 某快餐店想要估计每位顾客午餐的平均花费金额。在为期3周的时间里选取49名顾客组成了一个简单随机样本。(1)假定总体标准差为15元,求样本均值的抽样标准误差。=2.143 (2)在95的置信水平下,求估计误差。 ,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t= 因此,=1.962.143=4.2(3)如果样本均值为120元,求总体均值 的95的置信区间。置信区间为:=(115.8,124.2)7.3 =(87818.856,121301.144)7.4 从总体中抽取一个n=100的简单随机样
10、本,得到=81,s=12。要求:大样本,样本均值服从正态分布:或置信区间为:,=1.2(1)构建的90的置信区间。=1.645,置信区间为:=(79.03,82.97)(2)构建的95的置信区间。=1.96,置信区间为:=(78.65,83.35)(3)构建的99的置信区间。=2.576,置信区间为:=(77.91,84.09)7.5 (1)=(24.114,25.886)(2)=(113.184,126.016)(3)=(3.136,3.702)7.6 (1)=(8646.965,9153.035)(2)=(8734.35,9065.65)(3)=(8761.395,9038.605)(4)
11、=(8681.95,9118.05)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.33.16.25.82.34.15.44.53.24.42.05.42.66.41.83.55.72.32.11.91.25.14.34.23.60.81.54.71.41.22.93.52.40.53.62.5求该校大学生平均上网时间的置信区间,置信水平分别为90,95和99。解:(1)样本均值=3.32,样本标准差s=1.61 =0.9,t=1.645,=(2.88,3.76) =0.95,t=1.96
12、,=(2.79,3.85) =0.99,t=2.576,=(2.63,4.01)7.8 =(7.104,12.896)7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是: 10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95的置信区间。解:小样本,总体方差未知,用t统计量均值=9.375,样本标准差s=4.11, =0.95,n=16,=2.13置信区间:=(7.18,11.57)7.10 (1) =(148.8695,150.1305)
13、 (2)中心极限定理711 某企业生产的袋装食品采用自动打包机包装,每袋标准重量为l00g。现从某天生产的一批产品中按重复抽样随机抽取50包进行检查,测得每包重量(单位:g)如下:每包重量(g)包数969898100100102102104104106233474合计50 已知食品包重量服从正态分布,要求: (1)确定该种食品平均重量的95的置信区间。 解:大样本,总体方差未知,用z统计量:样本均值=101.4,样本标准差s=1.829,=0.95,=1.96置信区间:=(100.89,101.91)(2)如果规定食品重量低于l00g属于不合格,确定该批食品合格率的95的置信区间。解:总体比率
14、的估计。大样本,总体方差未知,用z统计量:样本比率=(50-5)/50=0.9,=0.95,=1.96置信区间:=(0.8168,0.9832)7.12 正态分布,大样本,方差未知 =(15.679,16.576)713 一家研究机构想估计在网络公司工作的员工每周加班的平均时间,为此随机抽取了18个员工。得到他们每周加班的时间数据如下(单位:小时):63218171220117902182516152916假定员工每周加班的时间服从正态分布。估计网络公司员工平均每周加班时间的90%的置信区间。解:小样本,总体方差未知,用t统计量:均值=13.56,样本标准差s=7.801,=0.90,n=18
15、,=1.7369置信区间:=(10.36,16.75)7.14 (1)=(0.33159,0.7041) (2)=(0.7765,0.8635)(3)=(0.4558,0.5042)715 在一项家电市场调查中随机抽取了200个居民户,调查他们是否拥有某一品牌的电视机。其中拥有该品牌电视机的家庭占23。求总体比例的置信区间,置信水平分别为90%和95%。解:总体比率的估计大样本,总体方差未知,用z统计量:样本比率=0.23,=0.90,=1.645置信区间:=(0.1811,0.2789)=0.95,=1.96=(0.1717,0.2883)7.16 =1667.17 (1)=2522(2)=
16、601 (当未知是,取0.5)(3)=3287.18 (1)=(0.5070,0.7731) (2)=627.19720 顾客到银行办理业务时往往需要等待一段时间,而等待时间的长短与许多因素有关,比如,银行业务员办理业务的速度,顾客等待排队的方式等。为此,某银行准备采取两种排队方式进行试验,第一种排队方式是:所有顾客都进入一个等待队列;第二种排队方式是:顾客在三个业务窗口处列队三排等待。为比较哪种排队方式使顾客等待的时间更短,银行各随机抽取10名顾客,他们在办理业务时所等待的时间(单位:分钟)如下:方式16.56.66.76.87.17.37.47.77.77.7方式24.25.45.86.2
17、6.77.77.78.59.310 要求:(1)构建第一种排队方式等待时间标准差的95的置信区间。解:估计统计量:经计算得样本标准差=3.318,=0.95,n=10,=19.02,=2.7置信区间:=(0.1075,0.7574)因此,标准差的置信区间为(0.3279,0.8703)(2)构建第二种排队方式等待时间标准差的95的置信区间。解:估计统计量:经计算得样本标准差=0.2272,=0.95,n=10,=19.02,=2.7置信区间:=(1.57,11.06)因此,标准差的置信区间为(1.25,3.33)(3)根据(1)和(2)的结果,你认为哪种排队方式更好? 第一种方式好,标准差小。
18、7.21 正态总体,独立小样本,方差未知但相等:(其中,) (1)=1.7291,代入略(2)=2.0930,代入略(3)=2.8609,代入略7.22 (1)正态或非正态总体,独立大样本,方差未知(2)正态总体,独立小样本,方差未知但:(其中,)(3)正态总体,独立小样本,方差未知但,(4)正态总体,独立小样本,方差未知但,:(其中,)(5)正态总体,独立小样本,方差未知但, (其中)723 下表是由4对观察值组成的随机样本。配对号来自总体A的样本来自总体B的样本1234251080765(1)计算A与B各对观察值之差,再利用得出的差值计算和。 =1.75,=2.62996(2)设分别为总体
19、A和总体B的均值,构造的95的置信区间。解:小样本,配对样本,总体方差未知,用t统计量均值=1.75,样本标准差s=2.62996,=0.95,n=4,=3.182置信区间:=(-2.43,5.93)7.24小样本,配对样本,总体方差未知:=2.2622=(6.3272,15.6728)725 从两个总体中各抽取一个250的独立随机样本,来自总体1的样本比例为40,来自总体2的样本比例为30。要求:(1)构造的90的置信区间。(2)构造的95的置信区间。解:总体比率差的估计大样本,总体方差未知,用z统计量:样本比率p1=0.4,p2=0.3,置信区间:=0.90,=1.645=(3.02%,1
20、6.98%)=0.95,=1.96=(1.68%,18.32%)7.26 生产工序的方差是工序质量的一个重要度量。当方差较大时,需要对序进行改进以减小方差。下面是两部机器生产的袋茶重量(单位:g)的数据:机器1机器23.453.223.93.223.283.353.22.983.73.383.193.33.223.753.283.33.23.053.53.383.353.33.293.332.953.453.23.343.353.273.163.483.123.283.163.283.23.183.253.33.343.25要求:构造两个总体方差比/的95的置信区间。解:统计量:置信区间:=0
21、.058,=0.006,n1=n2=21,=0.95,=2.4645,=0.4058=(4.05,24.6)727 根据以往的生产数据,某种产品的废品率为2。如果要求95的置信区间,若要求估计误差(边际误差)不超过4,应抽取多大的样本?解:, =0.95,=1.96=47.06,取n=48或者50。728 某超市想要估计每个顾客平均每次购物花费的金额。根据过去的经验,标准差大约为120元,现要求以95的置信水平估计每个顾客平均购物金额的置信区间,并要求边际误差不超过20元,应抽取多少个顾客作为样本?解:,=0.95,=1.96, =138.3,取n=139或者140,或者150。第八章 假设检
22、验8.1 提出假设:H0:=4.55;H1:4.55 构建统计量(正态,小样本,方差已知):=-1.83 求临界值:=0.05,=1.96 决策:因为,所有,不拒绝H0 结论:可以认为现在生产的铁水平均含碳量是4.5582 一种元件,要求其使用寿命不得低于700小时。现从一批这种元件中随机抽取36件,测得其平均寿命为680小时。已知该元件寿命服从正态分布,60小时,试在显著性水平005下确定这批元件是否合格。解:提出假设:H0:700;H1:700构建统计量(正态, 大样本,方差已知):-2求临界值:当0.05,查表得1.645。决策:因为z-,故拒绝原假设,接受备择假设结论:说明这批产品不合
23、格。8.3提出假设:H0:H0:250;H1:250 构建统计量(正态,小样本,方差已知):=3.33 求临界值:=0.05,=1.645 决策:因为,所有,拒绝H0 结论:明显增产84 糖厂用自动打包机打包,每包标准重量是100千克。每天开工后需要检验一次打包机工作是否正常。某日开工后测得9包重量(单位:千克)如下: 993 987 1005 1012 983 997 995 1021 1005已知包重服从正态分布,试检验该日打包机工作是否正常(a0.05)?解:提出假设:H0:100;H1:100构建统计量(正态, 小样本,方差未知): -0.055求临界值:当0.05,自由度n18时,查
24、表得2.306。决策:因为,样本统计量落在接受区域,故接受原假设,拒绝备择假设结论:说明打包机工作正常。85 某种大量生产的袋装食品,按规定不得少于250克。今从一批该食品中任意抽取50袋,发现有6袋低于250克。若规定不符合标准的比例超过5就不得出厂,问该批食品能否出厂(a005)?解:提出假设: H0:0.05;H1:0.05构建统计量:2.271求临界值:当0.05,查表得1.645。决策:因为,样本统计量落在拒绝区域,故拒绝原假设,接受备择假设结论:说明该批食品不能出厂。8.6 提出假设:H0:25000;H1:25000构建统计量(正态,小样本,方差已知):1.549求临界值:当0.
25、05,查表得1.645。决策:因为z,故不能拒绝原假设结论:没有充分证据证明该厂家的广告是真实的87 某种电子元件的寿命x(单位:小时)服从正态分布。现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命显著地大于225小时(a005)?解:提出假设:H0:225;H1:225构建统计量(正态,小样本,方差已知):0.669求临界值:当0.05,自由度n115时,查表得1.753决策:因为t,样本统计量落在接受区域,故接受原假设,拒绝备择假设结论:说明元件寿命没
26、有显著大于225小时。8.88.9810 装配一个部件时可以采用不同的方法,所关心的问题是哪一个方法的效率更高。劳动效率可以用平均装配时间反映。现从不同的装配方法中各抽取12件产品,记录各自的装配时间(单位:分钟)如下: 甲方法:31 34 29 32 35 38 34 30 29 32 31 26 乙方法:26 24 28 29 30 29 32 26 31 29 32 28两总体为正态总体,且方差相同。问两种方法的装配时间有无显著不同 (a005)?解:提出假设:H0:12=0;H1:120构建统计量(总体正态,小样本抽样,方差未知,方差相等):根据样本数据计算,得12,=12,31.75,3.19446,28.6667,=2.46183。8.13262.648求临界值:0.05时,临界点为2.074决策:此题中,故拒绝原假设结论:认为两种方法的装配时间有显著差异811 调查了339名50岁以上的人,其中205名吸烟者中有43个患慢性气管炎,在134名不吸烟者中有13人患慢性气管炎。调查数据能否支持“吸烟者容易患慢性气管炎”这种观点(a005)
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。
Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1
陕公网安备 61072602000132号 违法和不良信息举报:0916-4228922