1、图形割补于方案设计 纵观近年来全国各地的中考试卷,图形操作型的问题渐多,而这些题又可分为两大类:一类是围绕“图形变换”展开的(我们已有专题论及),另一类是围绕图形的分割与剪拼展开的。我们现在要研究的,就是这后边的一类,分割与剪拼的形式与依据主要有:、原图形基础上进行分割,而分割的要求又分为:(1)借助于“边、角”计算的分割;(2)依“面积等分”为要求的分割;、将原图形等面积地变化成新图形的“剪与拼”。一、图形的分割 1、借助于“边、角”计算的分割例1 (1)已知中,请画一条直线,把这个三角形分割成两个等腰三角形。ABC(2)已知中,是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰
2、三角形,请探求与之间的关系。例2 如图(1),在和中,。(1)判断这两个三角形是否相似?并说明为什么?(2)能否分别过在这两个三角形中各作一条辅助线,使分割成的两个三角形与分割成的两个三角形分别对应相似?证明你的结论。DEFABC(1)例3 现有一张长和宽之比为2:1的长方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一个操作)。如图甲(虚线表示折痕)。除图甲外,请你再给出三个不同的操作(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作。如图乙和图甲是相同的操作)。(
3、甲)(乙)2244例4 如图(1)所示的形铁皮,工人师傅想用一条直线将其分成面积相等的两部分。请你帮工人师傅设计三种不同的分割方案(画出示意图)。例5 我们能把平分四边形面积的直线称为“好线”,利用下面的作图,可以得到四边形的“好线”:在四边形中,取对角线的中点,连结,显然,折线能把四边形的面积平分,再过点作,交于,则直线即为一条“好线”。(如图(1)(1)试证明:确为一条“好线”;ABCDEFABCDEM(2)如图(2),若为四边形的一条“好线”,为上一点,请作出过的一条“好线”,并说明理由。(1)(2)二、将原图形剪拼成新图形例1 下列各图中,沿着虚线将正方形剪成两部分,那么由这两部分既能
4、拼成平行四边形,又能拼成三角形和梯形的是( ) (中点)(中点)ABCDABCD例2 如图(1),现有两个边长之比为1:2的正方形与,已知点在同一直线上,且点重合,请你利用这两个正方形,通过裁割、平移、旋转的方法,拼出两个相似比为1;3的三角形。例3 请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图(1),请把它们分割后拼接成一个新的正方形。要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形。(1)(2)(4)(3)(5)小东同学的做法是:设新正方形的边长为。依题意,割补前后图形的面积相等,有,解得。由此可知新正方形的边长等于两个正方形组成
5、的矩形对角线的长。于是,画出如图(3)所示的新正方形。请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图(4),请把它们分割后拼接成一个新的正方形。要求:在图(4)中画出分割线,并在图(5)的正方形网格图(图中每个小正方形的边均为1)中用实线画出拼接成的新正方形。例4 在图(1)至(5)中,正方形的边长为,等腰直角三角形的斜边,且边和在同一直线上。操作示例DACEBH当时,如图(1),在上选取点G,使,连结和,裁掉和并分别拼接到和的位置构成四边形。思考发现 小明在操作后发现:该剪拼方法就是先将绕点F逆时针旋转90到的位置,易知EH与在同一直线上。连结CH,由剪拼方法
6、可得,故,从而又可将绕点C顺时针旋转90到的位置。这样,对于剪拼得到的四边形(如图(1),过点F作于点M(图略),利用公理可判断,易得, (1),进而根据正方形的判定方法,可以判断出四边形DAC(E)BDACBFFEEFF是正方形。DACFF (2) (3)(4)实践探究(1)正方形的面积是 ;(用含的式子表示)(2)类比图(1)的剪拼方法,请你就图(2)至(4)的三种情形分别画出剪拼在成一个正方形的示意图。联想拓展 小明通过探究后发现:当时,此类图形都能剪拼成正方形,且所选取的点G的位置在方向上随着的增大而不断上移。当时,如图(5)的图形能否剪能一个正方形?若能,请你在图中画出剪拼的示意图;
7、若不能,简要说明理由。ABCDE【观察与思考】在所给的图形中(1),(2),(3),(4),(5),均有正方形的边长为,等腰直角的斜边边区长为,因此,二者面积分别是和。由它们剪拼成的新正方形的面积应为+,即其边长应为,以此特征去设计剪拼即可。() (5)例5 蓝天希望学校正准备建一个多媒体教室,计划做长120,宽30的长条形桌面,现只有长80,宽45的木板,请你为该校设计不同的拼接方案,使拼起来的桌面符合要求。(只要求画出裁剪,拼接图形,并标上尺寸。)图形的剪拼问题,应注意以下几下方面的思考途径和解决方法:1、考虑图形的变换性质和如何利用变换;2、考虑相似三角形面积比与相似比的关系;3、考虑“
8、勾股定理”对应的图形面积关系;4、考虑特定数量的构成形式。图形割补于方案设计中考高分冲刺冲刺十七 图形的分割与剪拼 纵观近年来全国各地的中考试卷,图形操作型的问题渐多,而这些题又可分为两大类:一类是围绕“图形变换”展开的(我们已有专题论及),另一类是围绕图形的分割与剪拼展开的。我们现在要研究的,就是这后边的一类,分割与剪拼的形式与依据主要有:、原图形基础上进行分割,而分割的要求又分为:(1)借助于“边、角”计算的分割;(2)依“面积等分”为要求的分割;、将原图形等面积地变化成新图形的“剪与拼”。一、图形的分割 1、借助于“边、角”计算的分割例1 (1)已知中,请画一条直线,把这个三角形分割成两
9、个等腰三角形。AC(2)已知中,是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求与之间的关系。【观察与思考】对于(1)只需“构造等角”;对于(2),(1)可从“等边”推演角之间的关系。解:(1)如图,图,有两种不同的分割法。ABC(2)设,过顶点B的直线交边AC于D。在等腰三角形中,ABC若是顶角,如图,则,。此时只能有,即,ABCD,即与的关系是:。若是底角,则有两种情况。第一种情况:如图,当时,则,ABCD中,。、由,得,此时有,即有关系。、由,得,此时 ,即。ABCD、由,得,此时,即,为小于45的任意锐角。第二种情况,如图,当时,此时只能有,从而,这与题设是
10、最小角矛盾。当是底角时,不成立。【说明】本题是通过特定的分割推导角之间的特殊关系。例2 如图(1),在和中,。(1)判断这两个三角形是否相似?并说明为什么?(2)能否分别过在这两个三角形中各作一条辅助线,使分割成的两个三角形与分割成的两个三角形分别对应相似?证明你的结论。ABCDEF(1)【观察与思考】对于(1),只需算出即可。对于(2),可沿着“若有两个角对应相等,则两三角形相似”去作适当的辅助线。解:(1)不相似。中;在中,。,与不相似。(2)能分割成两个分别相似的三角形,作如图(1)所示的辅助线进行分割。具体操作:作,交BC于;作,交于。ABCM由作法和已知条件可知。,。DEFN,。(1
11、)。【说明】本题是从构造等角出发构造相似三角形,这一方法被普遍采用。例3 现有一张长和宽之比为2:1的长方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一个操作)。如图甲(虚线表示折痕)。除图甲外,请你再给出三个不同的操作(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作。如图乙和图甲是相同的操作)。(甲)(乙)解:答案例举如下:【说明】由本题的解法可以看出:要得到面积相等的图形,一可以构造“全等图形”,二可以由面积公式出发。例4 如图(1)所示的形铁皮,工人师傅想用
12、一条直线将其分成面积相等的两部分。请你帮工人师傅设计三种不同的分割方案(画出示意图)。2244【观察与思考】形铁皮可以看成由两个正方形相割而成,又可以看成由一个矩形和一个正方形拼合而成,应充分利用正方(1)形的轴对称性和矩形与正方形的中心对称性,因为“轴对称”和“中心对称”的两个图形面积都是相等的。解:如图(1),(2),(3)。(1)(2)(3)【说明】在本题,恰当地运用了基本图形的轴对称性质和中心对称性质。例5 我们能把平分四边形面积的直线称为“好线”,利用下面的作图,可以得到四边形的“好线”:在四边形中,取对角线的中点,连结,显然,折线能把四边形的面积平分,再过点作,交于,则直线即为一条
13、“好线”。(如图(1)(1)试证明:确为一条“好线”;ABCDEMABCDEF(2)如图(2),若为四边形的一条“好线”,为上一点,请作出过的一条“好线”,并说明理由。(1)(2)【观察与思考】对于(1),只需证明即可,而这由很多容易得到。对于(2),其原理与的作法相同。解:(1)证明:是对角线的中点,。ABCDEFHN。(2)。是“好线”。(2)这样作:连结,作,交于。如图(2),则直线为“好线”。理由如下 :。【说明】在本题,主要借助了“等底等高的三角形面积相等”,这是对图形进行“等面积变形”的重要而常用的手段。二、将原图形剪拼成新图形例1 下列各图中,沿着虚线将正方形剪成两部分,那么由这
14、两部分既能拼成平行四边形,又能拼成三角形和梯形的是( ) (中点)(中点)ABCD【观察与思考】图B中的两部分可拼成:IIIIIIIII平行四边形三角形梯形解:应选B。【说明】思考中可借助图形的“平移”、“旋转”,以及它们的结合。例2 如图(1),现有两个边长之比为1:2的正方形与,已知点在同一直线上,且点重合,请你利用这两个正方形,通过裁割、平移、旋转的方法,拼出两个相似比为1;3的三角形。ABCD【观察与思考】已知的两个正方形边长之比为1:2,不妨设它们的边长为和,则其面积就分别为和,而若剪拼成的两个三角形的相似比为1:3,则它们的面积比就是1:9,即分别为和。(1)这样促使我们想到对原图
15、形作如图(1)的裁割,其中每一个小三角形的面积都为,这样就有以下的解:解:设的中点为,沿将原图裁割,并将绕点顺时针旋转180至,则得到等腰直角三角形和等腰直角三角形,如图(1),显然,且有。ABCDMEABCD(1)(1)【说明】因为剪拼前后保持面积不变,所以许多剪拼问题的思考解决都可如本题以面积作为过渡的桥梁。例3 请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图(1),请把它们分割后拼接成一个新的正方形。要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形。(1)(2)(4)(3)(5)小东同学的做法是:设新正方形的边长为。依题意,割补前
16、后图形的面积相等,有,解得。由此可知新正方形的边长等于两个正方形组成的矩形对角线的长。于是,画出如图(3)所示的新正方形。请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图(4),请把它们分割后拼接成一个新的正方形。要求:在图(4)中画出分割线,并在图(5)的正方形网格图(图中每个小正方形的边均为1)中用实线画出拼接成的新正方形。【观察与思考】设新正方形的边长为,则,可知,边长应等于三个小正方形并在一起的所成矩形的对角线。因此有以下的解:解:所画图形如图(4)和图(5)所示。(5)(4)【说明】本题进一步说明,剪拼型的图形操作问题,常以面积做为解法思考的依据。例4
17、在图(1)至(5)中,正方形的边长为,等腰直角三角形的斜边,且边和在同一直线上。操作示例当时,如图(1),在上选取点G,使,连结和,裁掉和并分别拼接到和的位置构成四边形。DACEBH思考发现 小明在操作后发现:该剪拼方法就是先将绕点F逆时针旋转90到的位置,易知EH与在同一直线上。连结CH,由剪拼方法可得,故,从而又可将绕点C顺时针旋转90到的位置。这样,对于剪拼得到的四边形(如图(1),过点F作于点M(图略),利用公理可判断,易得, (1)DACFF,进而根据正方形的判定方法,可以判断出四边形DACBFFEEFF是正方形。DAC(E)B (2) (3)(4)实践探究(1)正方形的面积是 ;(
18、用含的式子表示)(2)类比图(1)的剪拼方法,请你就图(2)至(4)的三种情形分别画出剪拼在成一个正方形的示意图。联想拓展 小明通过探究后发现:当时,此类图形都能剪拼成正方形,且所选取的点G的位置在方向上随着的增大而不断上移。当时,如图(5)的图形能否剪能一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由。【观察与思考】在所给的图形中(1),(2),(3),(4),(5),均有正方形ABCDE的边长为,等腰直角的斜边边区长为,因此,二者面积分别是和。由它们剪拼成的新正方形的面积应为+,即其边长应为,以此特征去设计剪拼即可。() (5)解:实践探究(1)+;(2)剪拼方法如图(2
19、) 图(4)图(2) 图(3)中截,就有。联想拓展出 能:剪拼方法如图(5)(图中)。DACEBFF(G)DAC(E)BGHDAC(E)BFFGHABCDEFFHG (2)(3)(4)(5)【说明】本题的核心都是面积为的等腰直角三角形和面积为的正方形剪拼成一个大正方形,大正方形边长易知,相应剪拼方法也随之可得。例5 蓝天希望学校正准备建一个多媒体教室,计划做长120,宽30的长条形桌面,现只有长80,宽45的木板,请你为该校设计不同的拼接方案,使拼起来的桌面符合要求。(只要求画出裁剪,拼接图形,并标上尺寸。)【观察与思考】桌面面积为,而每块木板面积为,二者是相等的,另外,考虑截下两块的两块木板
20、的位置搭配,就有80458045(1)(2)804015154540401580解:8040301515401540454015图形的剪拼问题,应注意以下几下方面的思考途径和解决方法:1、考虑图形的变换性质和如何利用变换;2、考虑相似三角形面积比与相似比的关系;3、考虑“勾股定理”对应的图形面积关系;4、考虑特定数量的构成形式。 练习题1、(1)已知:如图(1),在中,直线平分交AC于点D。求证:与都是等腰三角形。ABCD(1)(2)(3)(2)在证明了该命题后,小颖发现:下列两个等腰三角形如图(2)、(3)也具有这种特性。请你在图(2)、(3)中分别画出一条直线,把他们分成两个小等腰三角形并
21、在图中标出所画等腰三角形两个底角的度数;(3)接着,小颖又发现:直角三角形和一些非等腰三角形也具有这样的特性,如:直角三角形斜边上的中线可把它分成两个小等腰三角形。请你画出两个具有这种特性的三角形的示意图,并在图中标出三角形各内角的度数。说明:要求画出的两个三角形不相似,而且既不是等腰三角形也不是直角三角形。2、如果要把正三角形的面积四等分,我们可以先连结正三角形的中心和各顶点(如图(1),这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连结中心和各边等分点(如图(2),这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三
22、角形拼合在一起(如图(3),这样就能把正三角形的面积四等分)。CABCABCAB(1)(2)(3)(1)怎样从正方形中心引线段,才能将这个正方形的面积等分?(2)怎样从正边形的中心引线段,才能将这个正边形的面积等分?ABCD正边形ABC3、某农场有一块三角形的土地,准备分成面积相等的4块分别承包给农户,请你画出两种不同的设计方案。ABCD4、设计两种不同方案,用一线段将梯形的面积平分。ABCPFE(E)5、如图的方格图,请以图格线为基础,画出四种不同的将其面积平分的分割线。6、在中,沿着中位线一刀剪切后,用得到的和四边形可以拼成平行四边形,剪切线与拼图如图示,仿上述的方法,按要求完成下列操作设
23、计,并画出图示。(1)在中,增加条件 ,沿着 一刀剪切后可以拼成矩形;(2)在中,增加条件 ,沿着 一刀剪切后可以拼成菱形;(3)在中,增加条件 ,沿着 一刀剪切后可以拼成正方形;(4)在中,一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,其操作过程(剪切线的作法)是: 。7、请将四个全等直角梯形,拼成一个平行四边形,并画出两种不同的拼法示意图(拼出的两个图形只要不全等就认为是不同的拼法)。8、右图中的方格图均是由边长为1的小正方形组成,将图(1)和图(2)中的阴影部分拼成一个正方形,在图中画出割补方法,附以文字说明。(1) (2)9、操作与探究:(1)图是一块直角三角形纸片将该三角形纸片按如
24、图方法折叠,使点A与点C重合,DE为折痕试证明CBE等腰三角形;(2)再将图中的CBE沿对称轴EF折叠(如图)通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”你能将图中的ABC折叠成一个组合矩形吗?如果能折成,请在图中画出折痕;(3)请你在图的方格纸中画出一个斜三角形,同时满足下列条件:折成的组合矩形为正方形;顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上)请你进一步探究,一个非特殊的四边形(指除平行四边形、梯
25、形外的四边形)满足何条件时,一定能折成组合矩形?AAABCBBDCEEDCF图图图图解析 这道题目从特殊到一般,从简单到复杂通过操作实践,探究中点四边形是矩形的条件我们在平行四边形一章中学习过,中点四边形一定是平行四边形,原四边形对角线的位置关系和数量关系决定中点四边形的形状:原四边形对角线垂直,中点四边形为矩形;原四边形对角线相等,中点四边形为菱形;原四边形对角线垂直且相等,中点四边形为正方形在图中,画ABC的BC边的高AD和BC边的中位线EF,再画AD边的中位线EM、FN,则折痕为EF、EM、FN在图中画一个锐角ABC,只要一边上的高等于该边上的长就可以了一个非特殊的四边形满足对角线垂直时
26、,一定能折成组合矩形这道题目体现了中考题源于课本又高于课本的思想已知ABC,BC=a,高线AD=h(如图),求作正方形,使其面积等于ABC面积的2倍。 如图,在一块矩形的铁皮上有一点P,现要在这块铁皮上剪去一个等腰直角三角形,把它加工成零件,请你在已知矩形ABCD上求作这个等腰直角三角形,使它的直角顶点为P,斜边落在AD上。 如图11,已知在ABC中,ABAC,ADBC于P,且ADBC4,若将此三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中的直角),并分别写出所拼四边形的对角线的长(不要求写计算过程,只须
27、写出结果)图11如图13,ABC是直角三角形,C90,现将ABC补成矩形,使ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上那么,符合要求的矩形可以画出两个:矩形ACBD和矩形AEFB(如图13),解答问题:图13(1)设图13中矩形ACBD和矩形AEFB的面积分别为S1,S2,则S1_S2(填“”“”或“”);(2)如图13,ABC是钝角三角形,按短文中的要求把它补成矩形那么,符合要求的矩形可以画出_个,利用图13把它画出(3)如图13,ABC是锐角三角形且三边满足BCACAB,按短文中的要求把它补成矩形那么,符合要求的矩形可以画出_个,利用图13把它画出(4)在(3)
28、中所画出的矩形中哪一个的周长最小?为什么?把一个等腰直角三角形和一个正三角形分别分割成3个三角形,使等腰直角三角形中的3个小三角形和正三角形中的3个小三角形分别相似请画出三角形的分割线,在小三角形的各个角上标出度数.将图,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,CBE为等腰三角形;再继续将纸片沿CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.图 图 图(1)如图,正方形网格中的ABC能折叠成“叠加矩形”吗?如果能,请在图中画出折痕;(2)如图,在正方形网格
29、中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且ABC折成的“叠加矩形”为正方形;(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是 ;(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是 . 已知两个连体的正方形(有两条边在同一条直线上)在正方形网格上的位置如图所示,请你把它分割后,拼接成一个新的正方形.要求:在正方形网格图中用实线画出拼接成的新正方形且新正方形的顶点在网格的格点上,不写作法).1)如图1,中,请用直尺和圆规作一条直线,把分割成两个等腰三角形(不写作法,但须保留作图痕迹)(2)已知内角度数的两个三角形如图2、图3所示请
30、你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数(第21题)ABC图1ABC图2242484ABC图310452已知:如图,ABC中, ACABBC(1)在BC边上确定点P的位置,使APC=C请画 出图形,不写画法;(2)在图中画出一条直线l,使得直线l分别与AB、BC边 交于点M、N,并且沿直线l将ABC剪开后可拼成 一个等腰梯形请画出直线l及拼接后的等腰梯形,并 简要说明你的剪拼方法如图,在ABC中,B=C=30.请你设计两种不同的分法,将ABC分割成四个小三角形,使得其中两个是全等三角形,而另外两个是相似但不全等的直角三角形请画出分割线段
31、,并在两个全等三角形中标出一对相等的内角的度数(画图工具不限,不要求证明,不要求写出画法) 请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形小东同学的做法是:设新正方形的边长为依题意,割补前后图形的面积相等,有,解得由此可知新正方形的边长等于两个正方形组成的矩形对角线的长于是,画出如图2所示的分割线,拼出如图3所示的新正方形图1图2 图3 请你参考小东同学的做法,解决如下问题:图4 图5 现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一个新的正方形要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形说明:直接画出图形,不要求写分析过程解:
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。
Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1
陕公网安备 61072602000132号 违法和不良信息举报:0916-4228922